【题目】在中,内角的对边分别为,已知.
求;
若,且面积,求的值.
【答案】(1);(2)
【解析】
(1)由正弦定理,三角函数恒等变换的应用化简已知等式可得tanA=,结合范围A∈(0,π),可求A的值.
(2)由已知利用三角形的面积公式可求c的值,进而可求b的值,根据余弦定理可得a的值.
(1)∵,
∴b=2a(cosCcos+sinCsin),可得:b=acosC+asinC,
由正弦定理可得:sinB=sinAcosC+sinAsinC,
可得:sin(A+C)=sinAcosC+cosAsinC=sinAcosC+sinAsinC,
可得:cosA=sinA,可得:tanA=,
∵A∈(0,π),
∴A=
(2)∵,且△ABC面积=bcsinA=2c×c×,
∴解得:c=2,b=4,
∴由余弦定理可得:a2=b2+c2-2bccosA=48+4-2××2×=28,解得:a=2
科目:高中数学 来源: 题型:
【题目】某老师是省级课题组的成员,主要研究课堂教学目标达成度,为方便研究,从实验班中随机抽取30次的随堂测试成绩进行数据分析已知学生甲的30次随堂测试成绩如下满分为100分:
88 58 50 36 75 39 57 62 72 51
85 39 57 53 72 46 64 74 53 50
44 83 70 63 71 64 54 62 61 42
把学生甲的成绩按,,,,,分成6组,列出频率分布表,并画出频率分布直方图;
为更好的分析学生甲存在的问题,从随堂测试成绩50分以下不包括50分的试卷中随机抽取3份进行分析,求恰有2份成绩在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某地区2012年至2018年生活垃圾无害化处理量(单位:万吨)的折线图.
注:年份代码分别表示对应年份.
(1)由折线图看出,可用线性回归模型拟合与的关系,请用相关系数(线性相关较强)加以说明;
(2)建立与的回归方程(系数精确到0.01),预测2019年该区生活垃圾无害化处理量.
(参考数据),,,,,,.
(参考公式)相关系数,在回归方程中斜率和截距的最小二乘估计公式分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个命题中真命题的序号是( ).
①平面内到两定点距离之比等于常数的点的轨迹是圆;
②平面内与定点A(-3,0)和B(3,0)的距离之差等于4的点的轨迹为;
③点P是抛物线上的动点,点P在x轴上的射影是M,点A的坐标是,则的最小值是;
④已知P为抛物线上一个动点,Q为圆上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是
A.①B.②C.③D.④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为双曲线: 的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线C于点,且
(1)求双曲线C的方程;
(2)若直线与双曲线C恒有两个不同交点P和Q且 (其中O为原点),求k的取值范围;
(3)过双曲线C上任意一点R作该双曲线两条渐近线的垂线,垂足分别为M,N,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题:方程表示焦点在轴上的双曲线:命题:若存在,使得成立.
(1)如果命题是真命题,求实数的取值范围;
(2)如果“”为假命题,“”为真命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应绿色出行,某市在推出“共享单车”后,又推出“新能源租赁汽车”.每次租车收费的标准由两部分组成:①里程计费:1元/公里;②时间计费:元/分.已知陈先生的家离上班公司公里,每天上、下班租用该款汽车各一次.一次路上开车所用的时间记为(分),现统计了50次路上开车所用时间,在各时间段内频数分布情况如下表所示
将各时间段发生的频率视为概率,一次路上开车所用的时间视为用车时间,范围为分.
(1)估计陈先生一次租用新能源租赁汽车所用的时间不低于分钟的概率;
(2)若公司每月发放元的交通补助费用,请估计是否足够让陈先生一个月上下班租用新能源租赁汽车(每月按天计算),并说明理由.(同一时段,用该区间的中点值作代表)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com