精英家教网 > 高中数学 > 题目详情
10.某奖励基金发放方式为:每年一次,把奖金总额平均分成6份,奖励在某6个方面为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息存入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%,2000年该奖发放后基金总额约为21000万元.用an表示为第n(n∈N*)年该奖发放后的基金总额(2000年为第一年).
(1)用a1表示a2与a3,并根据所求结果归纳出an的表达式;
(2)试根据an的表达式判断2011年度该奖各项奖金是否超过150万元?并计算从2001年到2011年该奖金累计发放的总额.
(参考数据:1.062410=1.83,1.0329=1.32,1.031210=1.36,1.03211=1.40)

分析 (1)由题意可得a2=a1(1+3.12%),a3=${a}_{1}(1+3.12%)^{2}$,即可归纳出an
(2)利用(1)的通项公式an可得a11,再利用等比数列的求和公式即可得出从2001年到2011年该奖金累计发放的总额.

解答 解:(1)由题意知:${a_2}={a_1}(1+6.24%)-\frac{1}{2}{a_1}•6.24%={a_1}(1+3.12%)$,${a_3}={a_2}(1+6.4%)-\frac{1}{2}{a_2}•6.24%={a_2}(1+3.12%)={a_1}{(1+3.12%)^2}$,
可得:${a_n}=21000{(1+3.12%)^{n-1}}(n∈{N^*})$.
(2)2010年该奖发放后基金总额为$a_{11}^{\;}=21000{(1+3.12%)^{10}}$,
2011的度该奖各项奖金额为$\frac{1}{6}•\frac{1}{2}•{a_{11}}6.24%≈149$(万元)
由此可知,2011年度该奖各项奖金没有超过150万元.
从2001年到2011年该奖金累计发放的总额为:
${a_1}\frac{6.24%}{2}+{a_2}\frac{6.24%}{2}+…+{a_{10}}\frac{6.24%}{2}=3.12%({a_1}+{a_2}+…+{a_{10}})$
=$3.12%\frac{{21000({{1.0312}^{10}}-1)}}{1.0312-1}=7560$(万元).

点评 本题考查了等比数列的通项公式与求和公式及其应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知$f(α)=\frac{{sin({π+α})cos({2π-α})tan({-α})}}{{tan({-π-α})cos({\frac{3π}{2}+α})}}$.
(1)化简f(α);
(2)当$α=-\frac{31π}{3}$时,求f(α)的值;
(3)若α是第三象限的角,且$sinα=-\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.双曲线$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{16}$=1的离心率是(  )
A.$\frac{3}{5}$B.$\frac{5}{3}$C.$\frac{\sqrt{41}}{5}$D.$\frac{5}{\sqrt{41}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)的定义域是(0,+∞),f'(x)是f(x)的导数,且满足f(x)>f'(x),则不等式ex+2•f(x2-x)>ex2•f(2)的解集是(-1,0)∪(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=-sin3x-2sinx的最小值是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题中错误的是(  )
A.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ
B.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
C.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
D.如果平面α⊥平面β,α∩β=l,过α内任意一点作l的垂线m,则m⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.数列{an}满足a1=2,an=$\frac{{a}_{n+1}-1}{{a}_{n+1}+1}$,其前n项的积为Tn,则T2016的值为(  )
A.-3B.1C.2D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合M={1,2},N={a2},则“a=1”是“N是M的子集”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列选项中表述正确的是(  )
A.空间中任意三点确定一个平面
B.直线上的两点和直线外的一点可以确定一个平面
C.分别在三条不同的直线上的三点确定一个平面
D.不共线的四点确定一个平面

查看答案和解析>>

同步练习册答案