精英家教网 > 高中数学 > 题目详情
10.命题“若对任意?n∈N*都有an<an+1,则数列{an}是递增数列”的逆否命题是(  )
A.若数列{an}是递减数列,则对任意n∈N*都有an≥an+1
B.若数列{an}是递减数列,则存在n∈N*都有an≥an+1
C.若数列{an}不是递增数列,则对任意n∈N*都有an≥an+1
D.若数列{an}不是递增数列,则存在n∈N*都有an≥an+1

分析 根据若p则q的逆否命题是若¬q则¬p,写出其逆否命题即可.

解答 解:命题“若对任意?n∈N*都有an<an+1,则数列{an}是递增数列”的逆否命题是:
若数列{an}不是递增数列,则存在n∈N*都有an≥an+1
故选:D.

点评 本题考查了四种命题之间的关系,熟练掌握四种命题在关系是解题的关键,本题属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图所示,在正方体ABCD-A1B1C1D1中,B1D与平面ACD1交于点O,BD与平面ACD1交于点M,求证:M,O,D1三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过点A(-2,3)作直线与抛物线y2=8x在第一象限相切于点B,记抛物线的焦点为F,则直线BF的斜率为(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≥0}\\{{x}^{2}+2x,x<0}\end{array}\right.$,则f(f(x))≤3的解集为(  )
A.(-∞,-3]B.[-3,+∞)C.(-∞,$\sqrt{3}$]D.[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知全集U={x|x-2≥0或x≤1},A={x|x2-4x+3>0},B=(-∞,1]∪(2,+∞),求A∩B及∁U(A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点分别为F1、F2,点$A(\frac{{\sqrt{15}}}{2},\frac{1}{2})$是以F1F2为直径的圆与双曲线的一交点.
(1)求双曲线的方程;
(2)若P为该双曲线上任意一点,直线PF1、PF2分别交双曲线于M、N两点,$\overrightarrow{P{F_1}}={λ_1}\overrightarrow{{F_1}M}({λ_1}≠-1)$,$\overrightarrow{P{F_2}}={λ_2}\overrightarrow{{F_2}N}({λ_2}≠-1)$,请判断λ12是否为定值,若是,求出该定值;若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.P是△ABC内一点.△ABC,△ABP.△ACP的面积分别对应记为S,S1,S2.已知$\overrightarrow{CP}$=$\frac{3λ}{4}$$\overrightarrow{CA}$+$\frac{λ}{4}$$\overrightarrow{CB}$,其中λ∈(0,1).若$\frac{S}{{S}_{1}}$=3则$\frac{{S}_{2}}{{S}_{1}}$=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合A={x|-1<x<4},B={-1,1,2,4},则A∩B=(  )
A.{1,2}B.{-1,4}C.{-1,2}D.{2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设全集U={1,2,3,4,5,6},集合A={1,3,5},B={2,3},则A∩(∁UB)={1,5}.

查看答案和解析>>

同步练习册答案