精英家教网 > 高中数学 > 题目详情

命题“存在实数x0y0,使得x0y0>1”,用符号表示为________;此命题的否定是________(用符号表示),是________(填“真”或“假”)命题.

x0y0∈R,x0y0>1;∀xy∈R,xy≤1;假

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、已知函数f(x)=ax2+bx+c(a≠0),且f(x)=x无实根,则下列命题中:
(1)方程f[f(x)]=x一定无实根;
(2)若a>0,则不等式f[f(x)]>x对一切实数x都成立;
(3)若a<0,则必存在实数x0,使得f[f(x0)]>x0
(4)若a+b+c=0,则不等式f[f(x)]<x对一切x都成立.
其中正确命题的序号有
(1)(2)(4)
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列命题是否是全称命题或特称命题,若是,用符号表示,并判断其真假.
(1)有一个实数α,sin2α+cos2α≠1;
(2)任何一条直线都存在斜率;
(3)所有的实数a,b,方程ax+b=0恰有唯一解;
(4)存在实数x0,使得
1
x
2
0
-x0+1
=2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实根.现有四个命题
①若a>0,则不等式f[f(x)]>x对一切x∈R成立;
②若a<0,则必存在实数x0使不等式f[f(x0)]>x0成立;
③方程f[f(x)]=x一定没有实数根;
④若a+b+c=0,则不等式f[f(x)]<x对一切x∈R成立.
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实数根,下列命题:①f[f(x)]=x也一定没有实数根;②若a<0,则必存在实数x0,使f[f(x)]>x0;③若a>0,则不等式f[f(x)]>x对一切实数x都成立;④若a+b+c=0,则不等式f[f(x)]<x对一切实数x都成立;
以上说法中正确的是:
①③④
①③④
.(把你认为正确的命题的所有序号都填上).

查看答案和解析>>

同步练习册答案