精英家教网 > 高中数学 > 题目详情

【题目】观察下列等式:
(sin 2+(sin 2= ×1×2;
(sin 2+(sin 2+(sin 2+sin( 2= ×2×3;
(sin 2+(sin 2+(sin 2+…+sin( 2= ×3×4;
(sin 2+(sin 2+(sin 2+…+sin( 2= ×4×5;

照此规律,
(sin 2+(sin 2+(sin 2+…+(sin 2=

【答案】n(n+1)
【解析】解:观察下列等式:(sin 2+(sin 2= ×1×2;(sin 2+(sin 2+(sin 2+sin( 2= ×2×3;(sin 2+(sin 2+(sin 2+…+sin( 2= ×3×4;(sin 2+(sin 2+(sin 2+…+sin( 2= ×4×5;

照此规律(sin 2+(sin 2+(sin 2+…+(sin 2= ×n(n+1),
故答案为: n(n+1)
由题意可以直接得到答案.;本题考查了归纳推理的问题,关键是找到相对应的规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设抛物线 )的焦点为准线为 在第一象限,已知以为圆心, 为半径的圆 两点的上方),为坐标原点.

1)若是边长为的等边三角形,且直线 )与抛物线相交于 两点,证明: 为定值;

2)记直线与抛物线的另一个交点为的面积比为3证明直线过点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,abc分别为内角ABC的对边,且2asin A=(2bc)sin B+(2cb)sin C.

(1)A的大小; (2)sin B+sin C=1,试判断ABC的形状.(12)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数=(sin x+cos x)2+cos 2x.

(1)求函数的最小正周期;

(2)求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x> 时,f(x+ )=f(x﹣ ).则f(6)=(  )
A.﹣2
B.﹣1
C.0
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三个顶点坐标分别为:直线经过点

(1)外接圆的方程

(2)若直线相交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,D是AC的中点,EF∥DB.

(1)已知AB=BC,AE=EC,求证:AC⊥FB;
(2)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左右焦点分别为 ,短轴两个端点为 ,且四边形是边长为的正方形。

(1)求椭圆的方程;

(2)已知圆的方程是,过圆上任一点作椭圆的两条切线 ,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|﹣5+21x﹣4x2<0},B={x∈Z|﹣3<x<6},则(RA)∩B的元素的个数为(
A.3
B.4
C.5
D.6

查看答案和解析>>

同步练习册答案