精英家教网 > 高中数学 > 题目详情

【题目】高三数学考试中,一般有一道选做题,学生可以从选修4-4和选修4-5中任选一题作答,满分10.某高三年级共有1000名学生参加了某次数学考试,为了了解学生的作答情况,计划从该年级1000名考生成绩中随机抽取一个容量为10的样本,为此将1000名考生的成绩按照随机顺序依次编号为000~999.

1)若采用系统抽样法抽样,从编号为000~999的成绩中随机确定的编号为026,求样本中的最大编号.

2)若采用分层抽样法,按照学生选择选修4-4或选修4-5的情况将成绩分为两层,已知该校共有600名考生选择了选修4-4400名考生选择了选修4-5,在选取的样本中,选择选修4-4的平均得分为6分,方差为2,选择选修4-5的平均得分为5分,方差为0.75.用样本估计该校1000名考生选做题的平均得分和得分的方差.

【答案】12)估计该校1000名考生选做题的平均得分为5.6,方差为1.74

【解析】

1)首先求得组距,再求得样本中的最大编号.

2)根据样本中选和选的平均得分和得分的方差列方程,由此计算出抽样的人的平均得分和得分的方差,进而估计出该校名考生选做题的平均得分和得分的方差.

1)组距为,所以最大编号为.

2)样本中选择选修4-4的考生有6人,4-5的考生有4人,所以得分平均数为

从选择选修4-4的考生中抽取6人,分别记为,…,

从选择选修4-5的考生中抽取4人,分别记为

由于,所以

所以

同理可求得

所以样本得分的方差为

.

所以估计该校1000名考生选做题的平均得分为5.6,方差为1.74.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,ACBC,D,E分别是A1B1,BC的中点.求证:

1)平面ACD⊥平面BCC1B1

2B1E∥平面ACD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线C1的参数方程为t为参数,0απ),曲线C2的参数方程为φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.

1)求曲线C2的极坐标方程;

2)设曲线C1与曲线C2的交点分别为ABM(﹣20),求|MA|2+|MB|2的最大值及此时直线C1的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若处导数相等,证明:为定值,并求出该定值;

(2)已知对于任意,直线与曲线有唯一公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),圆的参数方程为为参数)

1)求的普通方程;

2)设点,直线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论极值点个数;

2)证明:不等式恒成立.

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中,平面,四边形为平行四边形,点分别为的中点,且.

1)求证:平面

2)若,求该多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数),已知有且仅有3个零点,下列结论正确的是(

A.上存在,满足

B.有且仅有1个最小值点

C.单调递增

D.的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,对任意的都有,且当时,,则当时,方程的所有根之和为_____

查看答案和解析>>

同步练习册答案