精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,底面是矩形,平面,且,点是棱的中点,点在棱上移动.
(Ⅰ)当点的中点时,试判断直线与平面的关系,并说明理由;
(Ⅱ)求证:.
解:(Ⅰ)当点CD的中点时,平面PAC.        理由如下:
分别为的中点,
平面PAC.             
(Ⅱ) ,          .
是矩形,,
.
 .   
,点的中点, .
,   .              
   .               
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知为平行四边形,是长方形,的中点,平面平面

(Ⅰ)求证:
(Ⅱ)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图4,在三棱柱中,底面是边长为2的正三角形,侧棱长为3,且侧棱,点的中点.

(1)求证:
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m、l是直线,α、β是平面,则下列命题正确的是(   )
A.若l平行于α,则l平行于α内的所有直线
B.若mα,lβ,且m∥l,则α∥β
C.若mα,lβ,且m⊥l,则α⊥β
D.若mβ,m⊥α,则α⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

18.(本小题满分13分)如图,平面⊥平面,,,

直线与直线所成的角为,又。     
(1)求证:
(2)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在多面体ABDEC中,AE平面ABC,BD//AE,且AC=AB=BC=AE=1,BD=2,F为CD中点。
(I)求证:EF//平面ABC;
(II)求证:平面BCD;
(III)求多面体ABDEC的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面α截一球面得圆,过圆心且与α成二面角的平面β截该球面得圆.若该球面的半径为4,圆的面积为4,则圆的面积为
A.7B.9C.11D.13

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,所在平面,是圆的直径,是圆上的一点,分别是点上的射影,给出下列结论:① ;②;③;④平面,其中正确的结论是____________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线a,b异面,则经过a且平行于b的平面有       个。

查看答案和解析>>

同步练习册答案