精英家教网 > 高中数学 > 题目详情
抛物线的顶点在原点,焦点在x轴上,并且它的准线过等轴双曲线的一个焦点,已知抛物线过点(
3
2
6
)
,求抛物线和双曲线的标准方程.
考点:抛物线的标准方程,双曲线的标准方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点,可得p=2c.设抛物线方程为y2=4c•x,利用抛物线过点(
3
2
6
)
,求出c,即可求出抛物线和双曲线的标准方程.
解答: 解:由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点,∴p=2c.
设抛物线方程为y2=4c•x,
∵抛物线过点(
3
2
6
)
,∴6=4c•
3
2

∴c=1,故抛物线方程为y2=4x.
又双曲线x2-y2=λ的一个焦点为(1,0),
∴双曲线的标准方程为
x2
1
2
-
y2
1
2
=1
点评:本题考查抛物线和双曲线的标准方程,考查学生的计算能力,求出c是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

log
1
2
x-4i丨≥丨3+4i丨成立,x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是(  )
A、(1,2,1,2,2)
B、(2,2,2,3,3)
C、(1,1,2,2,3)
D、(1,2,1,1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2
+2ax-lnx,若f(x)在区间[
1
3
,2]
上是增函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的序号是
 

(1)“x=-1”是“x2-5x-6=0”的充分不必要条件.
(2)若x<0,则x2>0的否命题为真;
(3)设集合M={x|0<x≤3},N={x|0<x≤2},那么“a∈M”是“a∈N”的必要而不充分条件;
(4)在三角形ABC中,∠A=∠B是sinA=sinB的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

随机询问720名某高校在校大学生在购买食物时是否阅读营养说明,得到如表
阅读不阅读合计
男生160p
女生q80
合计720
已知这720名大学生中随机抽取1名,阅读营养说明的概率为
11
18

(1)求p,q的值;
(2)请根据独立性检验的知识来分析,有多少把握认为性别与阅读营养说明之间有关系.
温馨提示:随机变量K2=
n(ad-bc)
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
参考数据:
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,-1),
n
=(
3
cosx,-
1
2
),函数f(x)=
m
2
+
m
n
-2

(1)求f(x)的最大值,并求取最大值时x的取值集合;
(2)已知a、b、c分别为△ABC内角A、B、C的对边,且b2=ac,B为锐角,且f(B)=1,求
1
tanA
+
1
tanC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是双曲线
x2
9
-
y2
16
=1的两个焦点,点P在双曲线上,且|PF1|•|PF2|=32,求证:PF1⊥PF2

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知抛物线的焦点是F(-2,0),求它的标准方程;
(2)已知椭圆的长轴长是短轴长的3倍,且经过点P(0,3),求椭圆的标准方程;
(3)已知双曲线两个焦点分别为F1(0,-6),F2(0,6),双曲线上一点P到F1,F2的距离差的绝对值等于8,求双曲线的方程.

查看答案和解析>>

同步练习册答案