精英家教网 > 高中数学 > 题目详情
已知命题P:
x+1
x-3
≥0,命题Q:|1-
x
2
|<1,若P是真命题,Q是假命题,求实数x的取值范围.
考点:复合命题的真假
专题:不等式的解法及应用,简易逻辑
分析:求出命题P、Q为真命题时x的取值范围,再求P是真命题、Q是假命题时x的取值范围.
解答: 解:∵
x+1
x-3
≥0,
x+1≥0
x-3>0
,或
x+1≤0
x-3<0

解得x≤-1,或x>3;
又∵|1-
x
2
|<1,
∴-1<1-
x
2
<1
-2<-
x
2
<0
∴4>x>0
当P是真命题,Q是假命题时,
x≤-1,或x>3
x≤0,或x≥4

解得x≤-1,或x≥4;
∴实数x的取值范围是{x|x≤-1,或x≥4}.
点评:本题考查了复合命题的真假性问题,也考查了不等式的解法与应用问题,解题时应熟记复合命题的真值表,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某公司举办一次募捐爱心演出,有1000人参加,每人一张门票,每张100元.在演出过程中穿插抽奖活动,第一轮抽奖从这1000张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个实数x,y(x,y∈[0,4]),若满足y≥
8
5
x,电脑显示“中奖”,则抽奖者再次获得特等奖奖金;否则电脑显示“谢谢”,则不中特等奖奖金.
(Ⅰ)已知小明在第一轮抽奖中被抽中,求小明在第二轮抽奖中获奖的概率;
(Ⅱ)设特等奖奖金为a元,求小李参加此次活动收益的期望,若该公司在此次活动中收益的期望值是至少获利70000元,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,焦点在x轴的椭圆C:
x2
8
+
y2
b2
=1(b>0),点G(2,0),点P在椭圆上,且PG⊥x轴,连接OP交直线x=4于点M,连接MG交椭圆于A、B.
(Ⅰ)若G为椭圆右焦点,求|OM|;
(Ⅱ)记直线PA,PB的斜率分别为k1,k2,求k1+k2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为1的正方体ABCD-A1B1C1D1中,过对角线BD1的平面分别交AA1,CC1于点E,F.
(1)证明:截面BED1F把正方体分成体积相等的两部分;
(2)若截面BED1F与底面ABCD所成二面角的余弦值为
6
3
,求直线BD与平面BED1F所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项的和为Sn,且a1=1,a2=4,Sn+1=5Sn-4Sn-1(n≥2),等差数列{bn}满足b6=6,b9=12,
(1)分别求出数列{an},{bn}的通项公式;
(2)若Cn=2an×(bn+6),求数列{Cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex,(x∈R)
(1)求f(x)在点(1,e)处的切线方程;
(2)证明:曲线y=f(x)与曲线y=
1
2
x2+x+1有唯一公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+
1
2
x2-(1+a)x,若f(x)≥0在定义域内恒成立,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2x2
1-x
+lg(3x+1)的定义域为(  )
A、(-
1
3
,1)
B、(-
1
3
1
3
C、(-
1
3
,+∞)
D、(-∞,
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的导数
(1)g(x)=
x
2+x2

(2)g(x)=x(x+1)(x-3)
(3)g(x)=excosx
(4)g(x)=x+2sinx
(5)h(x)=2x3-3x2+x-8
(6)u(x)=5-3x+2x2-x3

查看答案和解析>>

同步练习册答案