精英家教网 > 高中数学 > 题目详情
已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形
(1)求证:BC∥平面C1B1N;
(2)求证:BN⊥平面C1B1N;
(3)设M为AB中点,在BC边上找一点P,使MP∥平面CNB1,并求
BPPC
的值.
分析:(1)利用几何体的三视图,判断侧面BCC1B1是矩形,利用直线与平面平行的判定定理证明BC∥平面C1B1N;
(2)该几何体的正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,BA,BC,BB1两两垂直. 以B为坐标原点,分别以BA,BC,BB1所在直线别为x,y,z轴建立空间直角坐标系,证出
BN
BN1
=0,
BN
B1C1
=0后即可证明BN⊥平面C1B1N;
(3)设P(0,0,a)为BC上一点,由MP∥平面CNB1,得知
MP
n2
,利用向量数量积为0求出a的值,并求出
BP
PC
的值.
解答:解:(1)证明:由正视图与侧视图可知侧面BCC1B1是矩形,所以BC∥B1C1,又B1C1?平面C1B1N,BC?平面C1B1N,
所以BC∥平面C1B1N…(3分)
(2)证明:∵该几何体的正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,
∴BA,BC,BB1两两垂直.                              …(5分)
以B为坐标原点,分别以BA,BC,BB1所在直线别为x,y,z轴建立空间直角坐标系,
则N(4,4,0),B1(0,8,0),C1(0,8,4),C(0,0,4)
BN
BN1
=(4,4,0)•(-4,4,0)=-16+16=0
BN
B1C1
=(4,4,0)•(0,0,4)=0
∴BN⊥NB1,BN⊥B1C1且NB1与B1C1相交于B1
∴BN⊥平面C1B1N;   …(7分)
(3)∵M(2,0,0).设P(0,0,a)为BC上一点,则
MP
=(-2,0,a),
∵MP∥平面CNB1
MP
n2
MP
n2
=(-2,0,a)•(1,1,2)=-2+2a=0⇒a=1.
又PM?平面CNB1,∴MP∥平面CNB1
∴当PB=1时,MP∥平面CNB1
BP
PC
=
1
3
…(12分)
点评:本题主要考查了直线与平面之间的位置关系及判断,线面角求解,利用空间向量的方法,能够降低思维难度,但要注意有关的运算要准确.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知某几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.
精英家教网精英家教网
(Ⅰ)若M为CB中点,证明:MA∥平面CNB1
(Ⅱ)求这个几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•钟祥市模拟)已知某几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.

(1)求证:BN⊥平面C1B1N;
(2)θ 为直线C1N与平面CNB1所成的角,求sinθ 的值
(3)设M为AB中点,在BC边上找一点P,使MP∥平面CNB1并求
BPPC
的值

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的直观图与它的三视图,其中俯视图为正三角形,其它两个视图是矩形.已知D是这个几何体的棱A1C1上的中点.

(Ⅰ)求出该几何体的体积;
(Ⅱ)求证:直线BC1∥平面AB1D;
(Ⅲ)求证:直线B1D⊥平面AA1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乐山一模)已知某几何体的直观图和三视图如图所示,其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.
(Ⅰ)证明:BN⊥平面C1NB1
(Ⅱ)求平面CNB1与平面C1NB1所成角的余弦值;

查看答案和解析>>

同步练习册答案