精英家教网 > 高中数学 > 题目详情
7.设$\overrightarrow a=(2,-1),向量\overrightarrow b满足2\overrightarrow a-\overrightarrow b$=(-1,3),则$\overrightarrow b$等于(  )
A.(-5,5)B.(5,-5)C.(-3,3)D.(3,-3)

分析 设$\overrightarrow{b}$=(x,y),由$\overrightarrow a=(2,-1),向量\overrightarrow b满足2\overrightarrow a-\overrightarrow b$=(-1,3),利用平面向量坐标运算法则能求出$\overrightarrow{b}$.

解答 解:设$\overrightarrow{b}$=(x,y),
∵$\overrightarrow a=(2,-1),向量\overrightarrow b满足2\overrightarrow a-\overrightarrow b$=(-1,3),
∴(4-x,-2-y)=(-1,3),
∴$\left\{\begin{array}{l}{4-x=-1}\\{-2-y=3}\end{array}\right.$,解得x=5,y=-5,
∴$\overrightarrow{b}$=(5,-5).
故选:B.

点评 本题考查向量的求法,是基础题,解题时要认真审题,注意平面向量坐标运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$过抛物线y2=8x的焦点,且与双曲线${x^2}-\frac{y^2}{2}=1$有相同的焦点,则该椭圆的方程是(  )
A.$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$B.$\frac{x^2}{4}+{y^2}=1$C.${x^2}+\frac{y^2}{4}=1$D.$\frac{{x}^{2}}{2}$+$\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=mx2+4mx+3>0在R上恒成立,则实数m的取值范围是(  )
A.[0,$\frac{2}{3}$)B.[0,$\frac{3}{4}$)C.($\frac{3}{4}$,+∞)D.(0,$\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.抛物线y=-$\frac{1}{8}{x}^{2}$的准线方程是(  )
A.x=$\frac{1}{32}$B.x=$\frac{1}{2}$C.y=2D.y=4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知平行六面体ABCD-A1B1C1D1,设A1D1中点为M,CD的中点为N,若∠A1AD=∠A1AB=∠BAD=60°且AA1=AB=AD=1,则|AC1|=$\sqrt{6}$,若$\overrightarrow{MN}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$+z$\overrightarrow{A{A}_{1}}$,则x+y+z=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若tan(α-β)=$\frac{1}{2}$,tan(α+β)=$\frac{1}{3}$,则tan2β等于(  )
A.$\frac{1}{7}$B.$\frac{4}{3}$C.-$\frac{1}{7}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)在(-∞,+∞)上有意义,对于给定的正数k,定义函数fk(x)=$\left\{\begin{array}{l}f(x),f(x)<k\\ k,f(x)≥k\end{array}\right.$,取k=3,f(x)=($\frac{k}{2}$)|x|,则fk(x)=$\frac{k}{2}$的零点有(  )
A.0个B.1个
C.2个D.不确定,随k的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2sin(2ωx+$\frac{π}{3}$)(ω>0),最小正周期为π
(1)求ω的值;
(2)将函数f(x)的图象向左平移$\frac{π}{6}$个单位长度,再将所得图象各点的横坐标缩小为原来的$\frac{1}{2}$(纵坐标不变),得到函数g(x)的图象,求g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在矩形ABCD中,AB=1,AD=a,PA⊥平面ABCD,且PA=1,E,F分别为AD,PA中点,在BC上有且只有一个点Q,使得PQ⊥QD.
(1)求证:平面BEF∥平面PDQ;
(2)求二面角E-BF-Q的余弦值.

查看答案和解析>>

同步练习册答案