精英家教网 > 高中数学 > 题目详情

【题目】在三棱锥中, 底面的中点, 的中点,点上,且.

1)求证: 平面

2)求证: 平面

3)若,求三棱锥的体积.

【答案】1见解析2见解析3

【解析】试题分析:1)由PB⊥底面ABC,可证ACPB,由∠BCA=90°,可得ACCB.又PB∩CB=B,即可证明AC⊥平面PBC.
2)取AF的中点G,连结CG,GM.可得EFCG.又CG平面BEF,有EF平面BEF,有CG∥平面BEF,同理证明GM∥平面BEF,有平面CMG∥平面BEF,即可证明CM∥平面BEF.
3)取BC中点D,连结ED,可得EDPB,由PB⊥底面ABC,故ED⊥底面ABC,由PB=BC=CA=2,即可求得三棱锥E-ABC的体积.

试题解析:

1)因为底面,且底面

所以.

,可得.

所以平面.

2)取的中点,连接.

因为的中点,所以中点.

中, 分别为中点.

所以

平面平面,所以平面.

同理可证平面.

所以平面平面.

平面

所以平面.

3)取中点,连接.

中, 分别为中点,所以

因为底面,所以底面.

,可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(m2+2m) ,当m为何值时f(x)是:
(1)正比例函数?
(2)反比例函数?
(3)二次函数?
(4)幂函数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】商家生产一种产品,需要先进行市场调研,计划对天津、成都、深圳三地进行市场调研,待调研结束后决定生产的产品数量,下列四种方案中最可取的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)证明:函数f(x)在(-1,+∞)上为增函数;
(2)用反证法证明方程f(x)=0没有负数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知:f(x)=(2-x)+a(x-1)2 (a∈R)

(1)讨论函数f(x)的单调区间:

(2)若对任意的x∈R,都有f(x)≤2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是定义在R上的奇函数和偶函数,当 x<0 时, f'(x)g(x)<f(x)g'(x),且 f(-3)=0 则不等式 的解集为( )
A.(-∞,-3)∪(3,+∞)
B.(-3,0)∪(0,3)
C.(-3,0)∪(3,+∞)
D.(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班20名同学某次数学测试的成绩可绘制成如图茎叶图.由于其中部分数据缺失,故打算根据茎叶图中的数据估计全班同学的平均成绩.

(1)完成频率分布直方图;

(2)根据(1)中的频率分布直方图估计全班同学的平均成绩(同一组中的数据用改组区间的中点值作代表);

(3)根据茎叶图计算出的全班的平均成绩为,并假设,且取得每一个可能值的机会相等,在(2)的条件下,求概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数在区间上的单调性;

(2)已知函数,若,且函数在区间内有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,上恒成立,求实数的取值范围;

(2)当时,若函数上恰有两个不同的零点,求实数的取值范围;

查看答案和解析>>

同步练习册答案