精英家教网 > 高中数学 > 题目详情

【题目】经研究,城市公交车的数量太多容易造成资源浪费,太少又难以满足乘客需求.为此,某市公交公司从某站占的40名候车乘客中随机抽取15人,将他们的候车时间(单位: )作为样本分成5组如下表:

组别

侯车时间

人数

2

6

2

2

3

1)估计这40名乘客中侯车时间不少于20分钟的人数;

2)若从上表侯车时间不少于10分钟的7人中选2人作进一步的问卷调查,求抽到的两人侯车时间都不少于20分钟的概率.

【答案】(1)(2)

【解析】试题分析:1)根据15名乘客中候车时间少于20分钟频数和为5,可估计这40名乘客中候车时间少于20分钟的人数;(2)将两组乘客编号,进而列举出所有基本事件和抽到的两人恰好来自不同组的基本事件个数,代入古典概型概率公式可得答案.

试题解析:(1)侯车时间不少于20分钟的概率为所以估计侯车时间不少于20分钟的人数为

(2)将侯车时间在范围4名乘客编号为侯车时间在范围3名乘车编号为

7人中任选两人包含以下21个基本事件: 其中抽到的两人侯车时间都不少于20分钟包含以下3个基本事件:

故所求概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣3x.
(1)求曲线y=f(x)在点x=2处的切线方程;
(2)若过点A(1,m)(m≠﹣2)可作曲线y=f(x)的三条切线,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数, 已知曲线y=f(x)

处的切线与直线垂直。

(1) 的值;

(2) 若对任意x1,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+bx2+cx的导函数图象关于直线x=2对称
(1)求b值;
(2)若f(x)在x=t处取得极小值,记此极小值为g(t),求g(t)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(ax2+4x+5).
(1)若f(1)<3,求a的取值范围;
(2)若a=1,求函数f(x)的值域.
(3)若f(x)的值域为R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:
(1)求a2 , a3
(2)猜想{an}通项公式并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在其定义域内有两个不同的极值点.

(1)求的取值范围.

(2)设的两个极值点为,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中 为自然对数的底数, …).

(1)若函数仅有一个极值点,求的取值范围;

(2)证明:当时,函数有两个零点 ,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某城市有一块半径为40m的半圆形O为圆心,AB为直径绿化区域,现计划对其进行改建.在AB的延长线上取点D,使OD=80m,在半圆上选定一点C,改建后的绿化区域由扇形区域AOC和三角形区域COD组成,其面积为S m2. 设∠AOC=x rad.

(1)写出S关于x的函数关系式S(x),并指出x的取值范围;

(2)张强同学说:当∠AOC=时,改建后的绿化区域面积S最大.张强同学的说法正确吗?若不正确,请求出改建后的绿化区域面积S最大值.

查看答案和解析>>

同步练习册答案