精英家教网 > 高中数学 > 题目详情
15.若x∈R,$\sqrt{y}$有意义且满足x2+y2-4x+1=0,则$\frac{y}{x}$的最大值为$\sqrt{3}$.

分析 令则$\frac{y}{x}$=k,则y=kx,代入x2+y2-4x+1=0,可得(1+k2)x2-4x+1=0,利用△=16-4(1+k2)≥0,可得结论.

解答 解:令$\frac{y}{x}$=k,则y=kx,代入x2+y2-4x+1=0,
可得(1+k2)x2-4x+1=0,△=16-4(1+k2)≥0,
∴$-\sqrt{3}≤k≤\sqrt{3}$,
∴$\frac{y}{x}$的最大值为$\sqrt{3}$;
故答案为$\sqrt{3}$.

点评 本题考查直线与圆的位置关系,考查判别式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知a>1,b>1,且$\frac{1}{4}lna,\frac{1}{4},lnb$成等比数列,则ab的最小值为e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数z满足$\frac{1-z}{1+z}=i$,则|z|=(  )
A.1B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.老师要求同学们做一个三角形,使它的三条高分别为:$\frac{1}{2}$,1,$\frac{2}{5}$,则(  )
A.同学们做不出符合要求的三角形B.能做出一个锐角三角形
C.能做出一个直角三角形D.能做出一个钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线C:y2=kx(k>0)的焦点为F,点N为抛物线上的动点,点$M({1,\sqrt{2}})$不在抛物线上.
(1)若k=4,求|MN|+|NF|的最小值;
(2)设p:2k2-11k+5<0,q:线段MF与抛物线C有公共点,若p∧q是真命题,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=(x2-2ax)lnx+bx2,a,b∈R.
(1)当a=1,b=-1时,设g(x)=(x-1)2lnx+x,求证:对任意的x>1,g(x)-f(x)>x2+x+e-e2
(2)当b=2时,若对任意x∈[1,+∞),不等式2f(x)>3x2+a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,点P是△ABC外接圆圆O在C处的切线与割线AB的交点.
(1)若∠ACB=∠APC,求证:BC是圆O的直径;
(2)若D是圆O上一点,∠BPC=∠DAC,AC=$\sqrt{2}$,AB=2$\sqrt{2}$,PC=4,求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(ωx+φ)(ω>0,π<|φ|<,2π)的部分图象如图所示,则φ的值为(  )
A.$\frac{5π}{3}$B.$\frac{4π}{3}$C.-$\frac{4π}{3}$D.-$\frac{5π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图所示的一个算法的程序框图,已知a1=3,输出的结果为7,则a2的值为11

查看答案和解析>>

同步练习册答案