精英家教网 > 高中数学 > 题目详情
16.已知点P(x,y)在不等式组$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$表示的平面区域内运动,则z=x-y的最大值是(  )
A.-1B.-2C.2D.3

分析 ①画可行域;②z为目标函数的纵截距;③画直线z=x-y.平移可得直线过A或B时z有最值.

解答 解:画$\left\{\begin{array}{l}x-2≤0\\ y-1≤0\\ x+2y-2≥0\end{array}\right.$的可行域如图,画直线z=x-y,
平移直线z=x-y过点B(2,0)时z有最大值2;
故选:C.

点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=1-cosθ\\ y=sinθ\end{array}\right.$(θ为参数).
(1)将C1的方程化为普通方程;
(2)以O为极点,x轴的正半轴建立极坐标系.设曲线C2的极坐标方程是$θ=\frac{π}{6}$,求曲线C1和C2的交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=blnx-\frac{x^2}{{2{e^2}}}+a$(其中a∈R,无理数e=2.71828…).当x=e时,函数f(x)有极大值$\frac{1}{2}$.
(Ⅰ)求实数a,b的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)任取x1,${x_2}∈[{e,{e^2}}]$,证明:|f(x1)-f(x2)|<3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.双曲线4x2-y2=16的焦点坐标是(±2$\sqrt{5}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知A(1,0),$B(1,\sqrt{2})$将线段OA,AB各n等分,设OA上从左至右的第k个分点为Ak,AB上从下至上的第k个分点Bk(1<k<n),过点Ak且垂直于x轴的直线为lK,OBK交lK于PK,则点PK在同一(  )
A.圆上B.椭圆上C.双曲线上D.抛物线上

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,在大小为45°的二面角A-EF-D中,四边形ABFE与CDEF都是边长为1的正方形,则B与C两点间的距离是(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.1D.$\sqrt{3-\sqrt{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在直三棱柱ABC-A1B1C1中,AB=AC=BC=2,AA1=1,则点A到平面A1BC的距离为(  )
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{3\sqrt{3}}}{4}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知圆C1:x2+y2+2x+2y-2=0与圆C2:x2+y2-2ax-2by+a2-1=0,若a,b变化时,圆C2始终平分圆C1的周长,则圆C2的面积最小值时的方程为(x+1)2+(y+2)2=5..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.(文)已知a2+$\frac{1}{4}$c2-3=0,则c+2a的最大值是(  )
A.2$\sqrt{3}$B.2$\sqrt{6}$C.2$\sqrt{7}$D.3$\sqrt{3}$

查看答案和解析>>

同步练习册答案