精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)对任意实数x,y恒有f(x)=f(y)+f(x﹣y),当x>0时,f(x)<0,且f(2)=﹣3.
(1)求f(0),并判断函数f(x)的奇偶性;
(2)证明:函数f(x)在R上的单调递减;
(3)若不等式f(2x﹣3)﹣f(﹣22x)<f(k2x)+6在区间(﹣2,2)内恒成立,求实数k的取值范围.

【答案】
(1)解:令x=y=0,可得f(0)=f(0)+f(0),解得f(0)=0

令x=0,可得f(0)=f(y)+f(﹣y),即f(﹣y)=﹣f(y)

故f(x)为奇函数


(2)证明:任取x1,x2∈R,且x1<x2

则f(x2)﹣f(x1)=f(x2﹣x1

∵x1<x2,∴x2﹣x1>0,∴f(x2﹣x1)<0

∴f(x2)﹣f(x1)<0,f(x2)<f(x1),

故函数f(x)在R上为减函数


(3)解:∵f(2)=﹣3,

∴f(4)=f(2)+f(2)=﹣6,

∵不等式f(2x﹣3)﹣f(﹣22x)<f(k2x)+6在区间(﹣2,2)内恒成立

∴f(2x﹣3+22x)<f(k2x﹣4)在区间(﹣2,2)内恒成立.

∵函数f(x)在R上为减函数,

∴2x﹣3+22x>k2x﹣4在区间(﹣2,2)内恒成立

∴k<2x+2x+1在区间(﹣2,2)内恒成立,

∵x∈(﹣2,2),∴2x+2x∈[2, ),

∴k<2


【解析】(1)分别取x=y=0,和x=0可得f(0)=0,进而可得f(﹣y)=﹣f(y),可判f(x)为奇函数;(2)任取x1 , x2∈R,且x1<x2 , 可得f(x2)﹣f(x1)=f(x2﹣x1),结合已知可判f(x2)﹣f(x1)<0,可得单调性;(3)由已知式子可得f(4)=﹣6,不等式f(2x﹣3)﹣f(﹣22x)<f(k2x)+6在区间(﹣2,2)内恒成立转化为k<2x+2x+1在区间(﹣2,2)内恒成立,即可求实数k的取值范围..

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x),满足f(x+1)=f(x﹣1),且f(x)在[﹣3,﹣2]上是增函数,又α、β是锐角三角形的两个内角,则(
A.f(sinα)>f(cosβ)
B.f(cosα)<f(cosβ)
C.f(sinα)<f(cosβ)
D.f(sinα)<f(sinβ)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数,又在区间上单调递减的是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定两个命题,命题P:函数f(x)=(a﹣1)x+3在R上是增函数; 命题q:关于x的方程x2﹣x+a=0有实数根. 若p∧q为假命题,p∨q为真命题,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知具有相关关系的两个变量之间的几组数据如下表所示:

(1)请根据上表数据在网格纸中绘制散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并估计当时, 的值;

(3)将表格中的数据看作五个点的坐标,则从这五个点中随机抽取2个点,求这两个点都在直线的右下方的概率.

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的不等式|x﹣2|<a(a∈R)的解集为A,且 ∈A,﹣ A.
(1)对任意的x∈R,|x﹣1|+|x﹣3|≥a2+a恒成立,且a∈N,求a的值.
(2)若a+b=1,a,b∈R+ , 求 + 的最小值,并指出取得最小值时a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= +lg(x+2)的定义域为(
A.(﹣2,1)
B.(﹣2,1]
C.[﹣2,1)
D.[﹣2,﹣1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大小;
(2)若a=2,b= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1 (t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4.
(1)求出曲线C2的直角坐标方程;
(2)若C1与C2相交于A,B两点,求线段AB的长.

查看答案和解析>>

同步练习册答案