¶ÔÓÚÈý´Îº¯Êýf£¨x£©=ax3+bx2+cx+d£¨a¡Ù0£©£¬¶¨Ò壺Éèf¡å£¨x£©ÊǺ¯Êýy=f£¨x£©µÄµ¼Êýy=f¡ä£¨x£©µÄµ¼Êý£¬Èô·½³Ìf¡å£¨x£©=0ÓÐʵÊý½âx0£¬Ôò³Æµã£¨x0£¬f£¨x0£©£©Îªº¯Êýy=f£¨x£©µÄ¡°¹Õµã¡±£®ÓÐͬѧ·¢ÏÖ¡°ÈκÎÒ»¸öÈý´Îº¯Êý¶¼ÓС®¹Õµã¡¯£»ÈκÎÒ»¸öÈý´Îº¯Êý¶¼ÓжԳÆÖÐÐÄ£»ÇÒ¡®¹Õµã¡¯¾ÍÊǶԳÆÖÐÐÄ£®¡±ÇëÄ㽫ÕâÒ»·¢ÏÖΪÌõ¼þ£¬º¯Êýf(x)=x3-
3
2
x2+3x-
1
4
£¬ÔòËüµÄ¶Ô³ÆÖÐÐÄΪ
£¨
1
2
£¬1
£©
£¨
1
2
£¬1
£©
£®
·ÖÎö£º¸ù¾Ýº¯Êýf£¨x£©µÄ½âÎöʽÇó³öf¡ä£¨x£©ºÍf¡å£¨x£©£¬Áîf¡å£¨x£©=0£¬ÇóµÃxµÄÖµ£¬ÓÉ´ËÇóµÃº¯Êýf(x)=x3-
3
2
x2+3x-
1
4
¶Ô³ÆÖÐÐÄ£®
½â´ð£º½â£º£¨1£©¡ßº¯Êýf(x)=x3-
3
2
x2+3x-
1
4
£¬
¡àf¡ä£¨x£©=3x2 -3x+3£¬¡àf¡å£¨x£©=6x-3£®
Áî f¡å£¨x£©=6x-3=0£¬½âµÃ x=
1
2
£¬ÇÒf£¨
1
2
£©=1£¬
¹Êº¯Êýf(x)=x3-
3
2
x2+3x-
1
4
¶Ô³ÆÖÐÐÄΪ£¨
1
2
£¬1
£©£¬
¹Ê´ð°¸Îª£º£¨
1
2
£¬1
£©£®
µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²éº¯ÊýÓëµ¼ÊýµÈ֪ʶ£¬¿¼²é»¯¹éÓëת»¯µÄÊýѧ˼Ïë·½·¨£¬¿¼²é»¯¼ò¼ÆËãÄÜÁ¦£¬º¯ÊýµÄ¶Ô³ÆÐÔµÄÓ¦Óã¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚÈý´Îº¯Êýf£¨x£©=ax3+bx2+cx+d£¨a¡Ù0£©£®
¶¨Ò壺£¨1£©Éèf¡å£¨x£©ÊǺ¯Êýy=f£¨x£©µÄµ¼Êýy=f¡ä£¨x£©µÄµ¼Êý£¬Èô·½³Ìf¡å£¨x£©=0ÓÐʵÊý½âx0£¬Ôò³Æµã£¨x0£¬f£¨x0£©£©Îªº¯Êýy=f£¨x£©µÄ¡°¹Õµã¡±£»
¶¨Ò壺£¨2£©Éèx0Ϊ³£Êý£¬Èô¶¨ÒåÔÚRÉϵĺ¯Êýy=f£¨x£©¶ÔÓÚ¶¨ÒåÓòÄÚµÄÒ»ÇÐʵÊýx£¬¶¼ÓÐf£¨x0+x£©+f£¨x0-x£©=2f£¨x0£©³ÉÁ¢£¬Ôòº¯Êýy=f£¨x£©µÄͼÏó¹ØÓڵ㣨x0£¬f£¨x0£©£©¶Ô³Æ£®
¼ºÖªf£¨x£©=x3-3x2+2x+2£¬Çë»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©Çóº¯Êýf£¨x£©µÄ¡°¹Õµã¡±AµÄ×ø±ê
 
£»
£¨2£©¼ìÑ麯Êýf£¨x£©µÄͼÏóÊÇ·ñ¹ØÓÚ¡°¹Õµã¡±A¶Ô³Æ£¬¶ÔÓÚÈÎÒâµÄÈý´Îº¯Êýд³öÒ»¸öÓйء°¹Õµã¡±µÄ½áÂÛ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•²ýƽÇø¶þÄ££©¶ÔÓÚÈý´Îº¯Êýf£¨x£©=ax3+bx2+cx+d£¨a¡Ù0£©£¬¸ø³ö¶¨Ò壺Éèf¡ä£¨x£©ÊǺ¯Êýy=f£¨x£©µÄµ¼Êý£¬f¡å£¨x£©ÊǺ¯Êýf¡ä£¨x£©µÄµ¼Êý£¬Èô·½³Ìf¡å£¨x£©=0ÓÐʵÊý½âx0£¬Ôò³Æ£¨x0£¬f£¨x0£©£©Îªº¯Êýy=f£¨x£©µÄ¡°¹Õµã¡±£®Ä³Í¬Ñ§¾­¹ý̽¾¿·¢ÏÖ£ºÈκÎÒ»¸öÈý´Îº¯Êý¶¼ÓС°¹Õµã¡±£»ÈκÎÒ»¸öÈý´Îº¯Êý¶¼ÓжԳÆÖÐÐÄ£¬ÇÒ¡°¹Õµã¡±¾ÍÊǶԳÆÖÐÐÄ£®¸ø¶¨º¯Êýf(x)=
1
3
x3-
1
2
x2+3x-
5
12
£¬ÇëÄã¸ù¾ÝÉÏÃæ̽¾¿½á¹û£¬½â´ðÒÔÏÂÎÊÌâ
£¨1£©º¯Êýf£¨x£©=
1
3
x3-
1
2
x2+3x-
5
12
µÄ¶Ô³ÆÖÐÐÄΪ
£¨
1
2
£¬1£©
£¨
1
2
£¬1£©
£»
£¨2£©¼ÆËãf(
1
2013
)+f(
2
2013
)+f(
3
2013
)
+¡­+f£¨
2012
2013
£©=
2012
2012
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·¿É½Çø¶þÄ££©¶ÔÓÚÈý´Îº¯Êýf£¨x£©=ax3+bx2+cx+d£¨a¡Ù0£©£¬¸ø³ö¶¨Ò壺Éèf¡ä£¨x£©ÊǺ¯Êýy=f£¨x£©µÄµ¼Êý£¬f¡å£¨x£©ÊÇf¡ä£¨x£©µÄµ¼Êý£¬Èô·½³Ìf¡å£¨x£©=0ÓÐʵÊý½âx0£¬Ôò³Æµã£¨x0£¬f£¨x0£©£©Îªº¯Êýy=f£¨x£©µÄ¡°¹Õµã¡±£®Ä³Í¬Ñ§¾­¹ý̽¾¿·¢ÏÖ£ºÈκÎÒ»¸öÈý´Îº¯Êý¶¼ÓС°¹Õµã¡±£»ÈκÎÒ»¸öÈý´Îº¯Êý¶¼ÓжԳÆÖÐÐÄ£¬ÇÒ¹Õµã¾ÍÊǶԳÆÖÐÐÄ£®Èôf(x)=
1
3
x3-
1
2
x2+
1
6
x+1
£¬Ôò¸Ãº¯ÊýµÄ¶Ô³ÆÖÐÐÄΪ
(
1
2
£¬1)
(
1
2
£¬1)
£¬¼ÆËãf(
1
2013
)+f(
2
2013
)+f(
3
2013
)+¡­+f(
2012
2013
)
=
2012
2012
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚÈý´Îº¯Êýf£¨x£©=ax3+bx2+cx+d£¨a¡Ù0£©£¬¶¨Ò壺Éèf''£¨x£©ÊǺ¯Êýy=f£¨x£©µÄµ¼Êýf¡ä£¨x£©µÄµ¼Êý£¬Èô·½³Ìf''£¨x£©=0ÓÐʵÊý½âx0£¬Ôò³Æµã£¨x0£¬f£¨x0£©£©Îªº¯Êýy=f£¨x£©µÄ¡°¹Õµã¡±£®ÓÐͬѧ·¢ÏÖ¡°ÈκÎÒ»¸öÈý´Îº¯Êý¶¼ÓС®¹Õµã¡¯£»ÈκÎÒ»¸öÈý´Îº¯Êý¶¼ÓжԳÆÖÐÐÄ¡±£¬ÇÒ¡®¹Õµã¡¯¾ÍÊǶԳÆÖÐÐÄ£®ÇëÄ㽫ÕâÒ»·¢ÏÖ×÷ΪÌõ¼þ£®
£¨1£©£®º¯Êýf£¨x£©=x3-3x2+3xµÄ¶Ô³ÆÖÐÐÄΪ
£¨1£¬2£©
£¨1£¬2£©
£®
£¨2£©£®Èôº¯Êýg(x)=
1
3
x3-
1
2
x2+3x-
5
12
+
1
x-
1
2
£¬Ôòg(
1
2013
)+g(
2
2013
)+g(
3
2013
)+¡­+g(
2012
2013
)
=
2012
2012
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•°²ÇìÈýÄ££©¶ÔÓÚÈý´Îº¯Êýf£¨x£©-ax3+bx2+cx+d£¨a¡Ù0£©£¬¸ø³ö¶¨Ò壺Éèft£¨x£©ÊǺ¯Êýy=f£¨x£©µÄµ¼Êý£¬ftt£¨x£©ÊǺ¯ÊýftµÄµ¼Êý£¬Èô·½³Ìftt£¨x£©=0ÓÐʵÊý½âx0£¬Ôò³Æµã£¨x0£¬f£¨x0£©£©Îªº¯Êýy=f£¨x£©µÄ¡°¹Õµã¡±£®Ä³Í¬Ñ§¾­¹ý̽¾¿·¢ÏÖ£ºÈκÎÒ»¸öÒ»ÔªÈý´Îº¯Êý¶¼ÓС°¹Õµã¡±£»ÇҸ᰹յ㡱ҲΪ¸Ãº¯ÊýµÄ¶Ô³ÆÖÐÐÄ£®Èôf£¨x£©=x3-
3
2
x2+
1
2
x+1£¬Ôòf£¨
1
2014
£©+f£¨
2
2014
£©+¡­+f£¨
2013
2014
£©=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸