已知数列满足(为常数),成等差数列.
(Ⅰ)求p的值及数列的通项公式;
(Ⅱ)设数列满足,证明:.
(Ⅰ),;(Ⅱ)详见解析.
解析试题分析:(Ⅰ)利用成等差数列.可求p的值,再用累加法求数列的通项公式;(Ⅱ)通过作差判断数列的单调性或利用数学归纳法进行证明.
试题解析:(Ⅰ)由
得
∵成等差数列,
∴
即得 (2分)
依题意知,
当时,
相加得
∴
∴ (4分)
又适合上式, (5分)
故 (6分)
(Ⅱ)证明:∵∴
∵ (8分)
若则
即当时,有 (10分)
又因为 (11分)
故 (12分)
(Ⅱ)法二:要证
只要证 (7分)
下面用数学归纳法证明:
①当时,左边=12,右边=9,不等式成立;
当时,左边=36,右边=36,不等式成立. (8分)
②假设当时,成立. (9分)
则当时,左边=4×3k+1=3×4×3k≥3×9k2,
要证3×9k2≥9(k+1)2,
只要正3k2≥(k+1)2,
即证2k2-2k-1≥0. (10分)
而当k即且时,上述不等式成立. (11分)
由①②可知,对任意,所证不等式成立. (12分)
考点:1.等差中项;2.累加法求和;3.数列单调性;4.数学归纳法.
科目:高中数学 来源: 题型:解答题
已知各项均为正数的两个无穷数列、满足.
(Ⅰ)当数列是常数列(各项都相等的数列),且时,求数列的通项公式;
(Ⅱ)设、都是公差不为0的等差数列,求证:数列有无穷多个,而数列惟一确定;
(Ⅲ)设,,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列是首项为1,公差为的等差数列,数列是首项为1,公比为的等比
数列.
(1)若,,求数列的前项和;
(2)若存在正整数,使得.试比较与的大小,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
下面四个图案,都是由小正三角形构成,设第n个图形中所有小正三角形边上黑点的总数为.
图1 图2 图3 图4
(1)求出,,,;
(2)找出与的关系,并求出的表达式;
(3)求证:().
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列{}的前n项和,数列{}满足=.
(I)求证数列{}是等差数列,并求数列{}的通项公式;
(Ⅱ)设,数列{}的前n项和为Tn,求满足的n的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com