精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论函数的单调性;

(2)若函数上的最大值为1,求实数的取值集合.

【答案】(1)见解析;(2).

【解析】试题分析:(1)对函数求导得分类讨论结合导数的性质即可得到函数的单调性;(2)函数上的最大值为1等价于对任意恒成立对任意恒成立变形可得分别对讨论,即可求得实数的取值集合.

试题解析:(1).

时,上单调递减;

时,,即上单调递减;

时,.

时,上递减;

时,上递增;

时,上递减;

综上,当时,上单调递减;

时,上递减;

上递增;上递减.

(2)∵函数上的最大值为1

对任意恒成立对任意恒成立变形可得.

时,,可得

时,.

,则.

时,,当时,.

因此,

.

时,.

,则.

时,

因此,

.

综上,.

的取值集合为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求函数的单调区间;

)当时,证明:(其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(Ⅰ)函数的图象能否与轴相切?若能,求出实数,若不能,请说明理由;

(Ⅱ)求最大的整数,使得对任意,不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程是为参数),以为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为,且直线与曲线交于两点.

(Ⅰ)求直线的普通方程及曲线的直角坐标方程;

(Ⅱ)把直线轴的交点记为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.

(I)请将两家公司各一名推销员的日工资 (单位: 元) 分别表示为日销售件数的函数关系式;

(II)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图。若记甲公司该推销员的日工资为,乙公司该推销员的日工资为 (单位: 元),将该频率视为概率,请回答下面问题:

某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

【答案】(I)见解析; (Ⅱ)见解析.

【解析】分析:(I)依题意可得甲公司一名推销员的工资与销售件数的关系是一次函数的关系式,而乙公司是分段函数的关系式,由此解得;(Ⅱ)分别根据条形图求得甲、乙公司一名推销员的日工资的分布列,从而可分别求得数学期望,进而可得结论.

详解:(I)由题意得,甲公司一名推销员的日工资 (单位:) 与销售件数的关系式为: .

乙公司一名推销员的日工资 (单位: ) 与销售件数的关系式为:

()记甲公司一名推销员的日工资为 (单位: ),由条形图可得的分布列为

122

124

126

128

130

0.2

0.4

0.2

0.1

0.1

记乙公司一名推销员的日工资为 (单位: ),由条形图可得的分布列为

120

128

144

160

0.2

0.3

0.4

0.1

∴仅从日均收入的角度考虑,我会选择去乙公司.

点睛:求解离散型随机变量的数学期望的一般步骤为:

第一步是判断取值,即判断随机变量的所有可能取值,以及取每个值所表示的意义;

第二步是探求概率,即利用排列组合,枚举法,概率公式,求出随机变量取每个值时的概率;

第三步是写分布列,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;

第四步是求期望值,一般利用离散型随机变量的数学期望的定义求期望的值

型】解答
束】
19

【题目】如图,在四棱锥中,底面为菱形, 平面 分别是 的中点.

(1)证明:

(2)设为线段上的动点,若线段长的最小值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数有两个极值点,且

)求的取值范围,并讨论的单调性.

)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为探索课堂教学改革,江门某中学数学老师用传统教学和导学案两种教学方式,在甲、乙两个平行班进行教学实验。为了解教学效果,期末考试后,分别从两个班级各随机抽取20名学生的成绩进行统计,得到如下茎叶图。记成绩不低于70分者为成绩优良”。

Ⅰ)请大致判断哪种教学方式的教学效果更佳,并说明理由;

Ⅱ)构造一个教学方式与成绩优良列联表,并判断能否在犯错误的概率不超过0.05的前提下认为成绩优良与教学方式有关”?

(附:,其中是样本容量)

独立性检验临界值表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到定点的距离比到定直线的距离小1.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)过点任意作互相垂直的两条直线,分别交曲线于点.设线段 的中点分别为,求证:直线恒过一个定点;

(Ⅲ)在(Ⅱ)的条件下,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求的最小值;

(2)若上为单调函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案