精英家教网 > 高中数学 > 题目详情
19.已知A={x|x≥k},B={x|x2-x-2>0},若“x∈A”是“x∈B”的充分不必要条件,则k的取值范围是(  )
A.k<-1B.k≤-1C.k>2D.k≥2

分析 解不等式可得x<-1,或x>2,由充要条件的定义可得{x|x≥k}是集合{x|x<-1,或x>2}的真子集,结合数轴可得答案.

解答 解:解不等式x2-x-2>0可得x<-1,或x>2,
要使“x≥k”是“x2-x-2>0”的充分不必要条件,
则需集合A={x|x≥k}是集合B={x|x<-1,或x>2}的真子集,
故只需k>2即可,故实数k的取值范围是(2,+∞),
故选:C.

点评 本题考查充要条件的判断,涉及不等式的解集,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.某几何体三视图如图所示,则该几何体的体积为8-2π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|y=$\frac{1}{\sqrt{-{x}^{2}+x+2}}$},B={y|y=x${\;}^{\frac{1}{3}}$,x∈R},C={x|mx<-1},
(1)求∁R(A∩B);
(2)是否存在实数m使得(A∩B)⊆C成立,若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知sinα=$\frac{1}{2}$+cosα,且α∈(0,$\frac{π}{2}$),则sin2α=$\frac{3}{4}$,cos2α=-$\frac{\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列各组函数表示相同函数的是(  )
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2B.f(x)=1,g(x)=x2
C.f(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$     g(t)=|t|D.f(x)=x+1,g(x)=$\frac{{x}^{2}-1}{x-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知Sn是数列{an}的前n项和,a1=1,a2=3,数列{anan+1}是公比为2的等比数列,则S10=(  )
A.1364B.$\frac{124}{3}$C.118D.124

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\frac{5}{{2}^{x}}$-log2x的零点在区间(n,n+1)(n∈N)内,则n的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知关于x的一元二次方程:9x2+6mx=n2-4(m,n∈R).
(1)若m∈{x|0≤x≤3,x∈N*},n∈{x|0≤x≤2,x∈Z},求方程有两个不相等实根的概率;
(2)若m∈{x|0≤x≤3,x∈R},n∈{x|0≤x≤2,x∈R},求方程有实数根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列各对双曲线中,既有相同的离心率又有相同的渐近线的是(  )
A.$\frac{x^2}{3}-{y^2}=1$和  $\frac{y^2}{9}-\frac{x^2}{3}=1$B.$\frac{x^2}{3}-{y^2}=1$和  ${y^2}-\frac{x^2}{3}=1$
C.${y^2}-\frac{x^2}{3}=1$和  ${x^2}-\frac{y^2}{3}=1$D.$\frac{x^2}{3}-{y^2}=1$和$\frac{y^2}{3}-\frac{x^2}{9}=-1$

查看答案和解析>>

同步练习册答案