精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0.
(1)求函数f(x)的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤c,求实数c的最小值.
分析:(1)由题意可得
f(1)=-2
f(1)=0
,解得即可.
(2)利用导数求出此区间上的极大值和极小值,再求出区间端点出的函数值,进而求出该区间的最大值和最小值,则对于区间[-2,2]上任意两个自变量的值x1,x2
都对于区间[-2,2]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤|f(x)max-f(x)min|≤c,求出即可.
解答:解:(1)∵函数f(x)=ax3+bx2-3x(a,b∈R),∴f(x)=3ax2+2bx-3.
∵函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0,∴切点为(1,-2).
f(1)=-2
f(1)=0
,即
a+b-3=-2
3a+2b-3=0
,解得
a=1
b=0

∴f(x)=x3-3x.
(2)令f(x)=0,解得x=±1,列表如下:
由表格可知:当x=-1时,函数f(x)取得极大值,且f(-1)=2;当x=1时,函数f(x)取得极小值,且f(1)=-2.
又f(-2)═-2,f(2)=2.
∴f(x)=x3-3x在区间[-2,2]上的最大值和最小值分别为2,-2.
∴对于区间[-2,2]上任意两个自变量的值x1,x2
都有|f(x1)-f(x2)|≤|f(x)max-f(x)min|=|2-(-2)|=4≤c.
即c得最小值为4.
点评:熟练掌握利用导数求切线的斜率和函数的单调区间及极值是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案