精英家教网 > 高中数学 > 题目详情
11.已知向量$\overrightarrow{m}$=(a,x+f(x)),$\overrightarrow{n}$=(1,ln(1+ex)-x),(a∈R),$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求函数y=f(x)的单调区间;
(2)若△ABC的三个顶点在函数y=f(x)的图象上,从左到右点A,B,C的横坐标依次是x1,x2,x3,且x1,x2,x3成等差数列,当a>0时,△ABC能否构成等腰三角形?若能,求出△ABC的面积的最大值;若不能,请说明理由.

分析 (1)利用向量共线,求出函数的解析式,然后利用函数的导数求解单调区间.
(2)由(1)可知,a>0时,f(x)在区间(-∞,+∞)上是减函数,利用反证法说明A、B、C三点不共线,说明B是钝角,假设三角形是等腰三角形,推出${e}^{{x}_{1}}={e}^{{x}_{3}}$,与x1<x3矛盾,说明△ABC不可能为等腰三角形.

解答 解:(1)向量$\overrightarrow{m}$=(a,x+f(x)),$\overrightarrow{n}$=(1,ln(1+ex)-x),(a∈R),$\overrightarrow{m}$∥$\overrightarrow{n}$.
可得x+f(x)=aln(1+ex)-ax,
即f(x)=aln(1+ex)-ax-x,
当a=0时,f(x)=-x,函数是减函数,函数的单调减区间为R.
f′(x)=$\frac{{ae}^{x}}{1+{e}^{x}}$-a-1=$\frac{-a}{1+{e}^{x}}$-1.
∵1+ex>2,
∴当a>-2时,f′(x)<0,函数是减函数,单调减区间是R.
当a<-2时,$\frac{-a}{1+{e}^{x}}$-1=0,可得-a=1+ex,解得x=ln(-1-a).
当x>ln(-1-a)时,f′(x)>0,函数是增函数,单调增区间是(ln(-1-a),+∞),
当x<ln(-1-a)时,f′(x)<0,函数是减函数,单调减区间是(-∞,ln(-1-a));
(2)由(1)可知,a>0时,f(x)在区间(-∞,+∞)上是减函数,
∵A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),∴不妨设x1<x2<x3,可得f(x1)>f(x2)>f(x3),${x}_{2}=\frac{{x}_{1}+{x}_{3}}{2}$,
下面利用反证法说明A、B、C三点不共线,若三点共线,则有:f(x2)=$\frac{1}{2}$(f(x1)+f(x3)),所以$2{e}^{{x}_{2}}={e}^{{x}_{1}}+{e}^{{x}_{3}}≥2\sqrt{{e}^{{x}_{1}}•{e}^{{x}_{3}}}$,得x1=x3与x1<x2<x3,矛盾,
接下来说明B是钝角:$\overrightarrow{BA}$=(x1-x2,f(x1)-f(x2)),$\overrightarrow{BC}$=(x3-x2,f(x3)-f(x2)),∴$\overrightarrow{BA}•\overrightarrow{BC}$=(x1-x2)(x3-x2)+(f(x1)-f(x2))(f(x3)-f(x2))∵x1-x2<0,x3-x2>0,
∴f(x1)-f(x2)>0,f(x3)-f(x2)<0,∴$\overrightarrow{BA}•\overrightarrow{BC}<0$.可得B∈$(\frac{π}{2},π)$
,即△ABC中B为钝角;
假设三角形是等腰三角形,只能是$\left|\overrightarrow{BA}\right|=\left|\overrightarrow{BC}\right|$,即$({x}_{1}-{x}_{2})^{2}+[f({x}_{1})-f({x}_{2})]^{2}$=$({x}_{3}-{x}_{2})^{2}+[f({x}_{3})-f({x}_{2})]^{2}$,
∵x3-x2=x2-x1,∴${[f({x}_{3})-f({x}_{2})]}^{2}={[f({x}_{1})-f({x}_{2})]}^{2}$,结合f(x1)>f(x2)>f(x3),化简可得;2f(x2)=f(x1)+f(x3),也就是:2aln(1+${e}^{{x}_{2}}$)-2(a+1)x2=aln(1+${e}^{{x}_{1}}$)(1+${e}^{{x}_{3}}$)-(a+1)(x1+x3),将${x}_{2}=\frac{{x}_{1}+{x}_{3}}{2}$代入可得,2aln(1+${e}^{{x}_{2}}$)-2(a+1)x2=aln(1+${e}^{{x}_{1}}$)(1+${e}^{{x}_{3}}$)-2(a+1)x2
∴2ln(1+${e}^{{x}_{2}}$)=ln(1+${e}^{{x}_{1}}$)(1+${e}^{{x}_{3}}$)
可得(1+${e}^{{x}_{2}}$)2=(1+${e}^{{x}_{1}}$)(1+${e}^{{x}_{3}}$),化简可得:${e}^{2{x}_{2}}+2{e}^{{x}_{2}}={e}^{{x}_{1}+{x}_{3}}+{e}^{{x}_{1}}+{e}^{{x}_{3}}$即${e}^{2{x}_{2}}={e}^{{x}_{1}}+{e}^{{x}_{3}}①$而事实上,若①成立,根据${e}^{{x}_{1}}+{e}^{{x}_{3}}≥2\sqrt{{e}^{{x}_{1}}•{e}^{{x}_{3}}}$=$2{e}^{{x}_{2}}$,必然得到${e}^{{x}_{1}}={e}^{{x}_{3}}$,与x1<x3矛盾,所以△ABC不可能为等腰三角形.

点评 本题考查函数的单调性的应用,反证法的应用,考查转化思想以及计算能力,分类讨论思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设△ABC中的内角A,B,C所对的边分别为a,b,c,已知a=2,(a+b)(sinA-sinB)=(c-b)sinC.
(Ⅰ)若b=2,求c边的长;
(Ⅱ)求△ABC面积的最大值,并指明此时三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在底面半径为2,母线长为4的圆锥中内有一个高为$\sqrt{3}$的圆柱.
(1)求:圆柱表面积的最大值;
(2)在(1)的条件下,求该圆柱外接球的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知三棱柱ABC-A1B1C1的底面是正三角形,所有棱长都是6,顶点A1在底面ABC内的射影是△ABC的中心,则四面体A1ABC,B1ABC,C1ABC公共部分的体积等于(  )
A.6$\sqrt{2}$B.6$\sqrt{3}$C.12$\sqrt{2}$D.12$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a,b,c均为正数,且2a=log${\;}_{\frac{1}{2}}$a,($\frac{1}{2}$)b=log${\;}_{\frac{1}{2}}$b,($\frac{1}{2}$)c=log2c,则(  )
A.c<a<bB.c<b<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为135°,则E的离心率为(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.$\sqrt{2}$D.$\root{4}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设等差数列{an}的前n项和为Sn,a3+a4=16,S7=63.
(1)求数列{an}的通项公式;
(2)设数列{$\frac{{a}_{1}}{{a}_{n}{a}_{n+1}}$}的前n项和为Tn,求证:Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=ax-3+1(a>0,且a≠1)的图象恒过定点P,则定点P的坐标为(  )
A.(3,3)B.(3,2)C.(3,6)D.(3,7)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.学校办了一场知识大赛,共分两组.其中甲组得满分的有1名女生和3名男生,乙组得满分的有2名女生和4名男生.现从得满分的同学中,每组各任选2名同学,代表学校参加市级比赛
(1)求选出的4名同学中恰有1名女生的概率;
(2)设X为选出的4名同学中女生的人数,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案