精英家教网 > 高中数学 > 题目详情

【题目】已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002, ,800进行编号;

(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;

(下面摘取了第7行到第9行)

(2)抽取的100的数学与地理的水平测试成绩如下表:

成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有20+18+4=42,若在该样本中,数学成绩优秀率是30%,求a,b的值:

人数

数学

优秀

良好

及格

地理

优秀

7

20

5

良好

9

18

6

及格

a

4

b

(3)在地理成绩及格的学生中,已知求数学成绩为优秀的人数比及格的人数少的概率.

【答案】(1)785,667,199(2)(3)

【解析】

试题分析:

(1)考查的是随机数表法,所以从第8行第7列的第一个开始数三个数构成一个三位数,该三位数必须小于或等于800,如果大于800,则舍去,继续数直到得到三个小于或等于800的三位数,即为最先检查的3个人的编号.

(2)根据数学成绩的优秀率和总人数100可以列出关于a,b的两个方程进而求出a,b的值.

(3)由总人数为100可以得到关于a+b=31,则可以得到a可以取的值和c可以取的值(两者相互确定),进而得到所有的基本事件,在所有基本事件中找出满足a<b的基本事件数,再根据古典概型的概率计算公式即可求出相应的概率.

试题解析:

(1)依题意,最先检测的3个人的编号依次为785,667,199; 3分

(2)由,得 5分

7分

(3)由题意,知,且

∴满足条件的有:(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(16,15),

(17,14),(18,13),(19,12),(20,11),(21,10),(22,9),(23,8)共14组,

且每组出现的可能性相同. 9分

其中数学成绩为优秀的人数比及格的人数少有:

(10,21),(11,20),(12,19),(13,18),(14,17),(15,16)共6组. 11分

∴数学成绩为优秀的人数比及格的人数少的概率为. 12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知(x+n展开式的二项式系数之和为256

(1)求n

(2)若展开式中常数项为,求m的值;

(3)若展开式中系数最大项只有第6项和第7项,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经市场调查,新街口某新开业的商场在过去一个月内(以30天计),顾客人数(千人)与时间(天)的函数关系近似满足),人均消费(元)与时间(天)的函数关系近似满足

(1)求该商场的日收益(千元)与时间(天)( )的函数关系式;

(2)求该商场日收益的最小值(千元).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是腾讯公司推出的一种手机通讯软件,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过6小时的用户为“A组”,否则为“B组”,调查结果如下:

A组

B组

合计

男性

26

24

50

女性

30

20

50

合计

56

44

100

(1)根据以上数据,能否有60%的把握认为“A组”用户与“性别”有关?

(2)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取5人中“A组”和“B组”的人数;

(3)从(2)中抽取的5人中再随机抽取2人赠送200元的护肤品套装,求这2人中至少有1人在“A组”的概率.

参考公式:K2=,其中n=a+b+c+d为样本容量.

参考数据:

P(K2k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.455

0.708

1.323

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数/ (为常数)的图像与轴交于点,曲线在点处的切线斜率为 .

(1)求的值及函数的极值;

(2)证明:当时, ;

(3)证明:对任意给定的正数,总存在,使得当,恒有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举行了以“重温时代经典,唱响回声嘹亮”为主题的“红歌”歌咏比赛. 该校高一年级有1,2,3,4四个班参加了比赛,其中有两个班获奖. 比赛结果揭晓之前,甲同学说:“两个获奖班级在2班、3班、4班中”,同学说2班没有获奖,3班获奖了”,同学说1班、4班中有且只有一个班获奖”,丁同学说:“乙说得对”. 已知这四人中有且只有两人的说法是正确的,则这两人是

A. 乙,丁 B. 甲,丙 C. 甲,丁 D. 乙,丙

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校学生营养餐由AB两家配餐公司配送. 学校为了解学生对这两家配餐公司的满意度,采用问卷的形式,随机抽取了40名学生对两家公司分别评分. 根据收集的80份问卷的评分,得到A公司满意度评分的频率分布直方图和B公司满意度评分的频数分布表:

(Ⅰ)根据A公司的频率分布直方图,估计该公司满意度评分的中位数;

(Ⅱ)从满意度高于90分的问卷中随机抽取两份,求这两份问卷都是给A公司评分的概率;

(Ⅲ)请从统计角度,对AB两家公司做出评价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为函数图象上一点, 为坐标原点,记直线的斜率

1)若函数在区间上存在极值,求实数的取值范围;

2)当时,不等式恒成立,求实数的取值范围;

3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:

赔付金额()

0

1 000

2 000

3 000

4 000

车辆数()

500

130

100

150

120

(1)若每辆车的投保金额均为2800,估计赔付金额大于投保金额的概率.

(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.

查看答案和解析>>

同步练习册答案