20£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄÊ×ÏîΪc£¬¹«²îΪd£¬µÈ±ÈÊýÁÐ{bn}µÄÊ×ÏîΪd£¬¹«±ÈΪc£¬ÆäÖÐc£¬d¡ÊZ£¬ÇÒa1£¼b1£¼a2£¼
b2£¼a3£®
£¨1£©ÇóÖ¤£º0£¼c£¼d£¬²¢ÓÉb2£¼a3ÍƵ¼cµÄÖµ£»
£¨2£©ÈôÊýÁÐ{an}¹²ÓÐ3nÏǰnÏîµÄºÍΪA£¬ÆäºóµÄnÏîµÄºÍΪB£¬ÔÙÆäºóµÄnÏîµÄºÍΪC£¬Çó$\frac{{B}^{2}-AC}{£¨A-C£©^{2}}$µÄ±ÈÖµ£®
£¨3£©ÈôÊýÁÐ{bn}µÄÇ°nÏǰ2nÏǰ3nÏîµÄºÍ·Ö±ðΪD£¬G£¬H£¬ÊÔÓú¬×ÖĸD£¬GµÄʽ×ÓÀ´±íʾH£¨¼´H=f£¨D£¬G£©£¬ÇÒ²»º¬×Öĸd£©

·ÖÎö £¨1£©¸ù¾ÝµÈ²î¡¢µÈ±ÈÊýÁеÄͨÏʽ¿ÉÒÔÍÆÖª0£¼c£¼d£¬½áºÏÒÑÖªÌõ¼þa1£¼b1£¼a2£¼b2£¼a3Áгö²»µÈʽ×飺$\left\{\begin{array}{l}{0£¼c£¼d}\\{d£¼cd}\\{cd£¼c+2d£¼3d}\end{array}\right.$£¬Í¨¹ý½â¸Ã²»µÈʽ×éÍƵ¼cµÄÖµ£»
£¨2£©¸ù¾ÝµÈ²îÊýÁеÄͨÏʽºÍÐÔÖÊÍÆÖªA=Sn£¬B=S2n-Sn£¬C=S3n-S2n£¬Ò×µÃB¡¢A+C=2B£¬½áºÏ´úÊýʽµÄ±äÐÎÀ´Çó$\frac{{B}^{2}-AC}{£¨A-C£©^{2}}$µÄÖµ£»
£¨3£©¸ù¾ÝµÈ±ÈÊýÁеÄÇ°nÏîºÍ¹«Ê½·Ö±ð±íʾ³öD¡¢G¡¢H£¬È»ºóÕÒµ½ËüÃǵÄÊýÁ¿¹Øϵ£®

½â´ð ½â£º£¨1£©ÒÑÖªa1=c£¬a2=c+d£¬a3=c+2d£¬b1=d£¬b2=dc£¬
ÓÉb1£¼a2¿ÉÖªc£¾0£¬Òò´Ë0£¼c£¼d£¬
ÓÉa1£¼b1£¼a2£¼b2£¼a3¿ÉµÃ£ºc£¼d£¼c+d£¼cd£¼c+2d£¬ÇÒc£¬d¡ÊZ£¬
Òò´Ë¿ÉµÃ²»µÈʽ×飺$\left\{\begin{array}{l}{0£¼c£¼d}\\{d£¼cd}\\{cd£¼c+2d£¼3d}\end{array}\right.$⇒$\left\{\begin{array}{l}{0£¼c}\\{1£¼c}\\{c£¼3}\end{array}\right.$⇒1£¼c£¼3£®
ÓÖÒòΪc¡ÊZ£¬
Òò´Ëc=2£»
£¨2£©ÊýÁÐ{an}µÄͨÏîΪÊýÁÐan=2+£¨n-1£©d£¬Sn=$\frac{d}{2}$n2+£¨2-$\frac{d}{2}$£©n£¬A=Sn£¬B=S2n-Sn£¬C=S3n-S2n£¬
B=$\frac{d}{2}$£¨4n2-n2£©+£¨2-$\frac{d}{2}$£©£¨2n-n£©=$\frac{d}{2}$•3n2+£¨2-$\frac{d}{2}$£©n£¬
¿ÉµÃA+C=$\frac{d}{2}$n2+£¨2-$\frac{d}{2}$£©n+$\frac{d}{2}$£¨9n2-4n2£©+£¨2-$\frac{d}{2}$£©£¨3n-2n£©=3d•n2+£¨2-$\frac{d}{2}$£©•2n£¬
¿ÉµÃA+C=2B£¬
Òò´Ë$\frac{{B}^{2}-AC}{£¨A-C£©^{2}}$=$\frac{£¨A+C£©^{2}-4AC}{4£¨A-C£©}$=$\frac{1}{4}$£»
£¨3£©ÊýÁÐ{bn}µÄͨÏîΪbn=d•2n-1£®
Òò´ËD=$\frac{d£¨{2}^{n}-1£©}{2-1}$=d£¨2n-1£©£¬G=d£¨22n-1£©£¬H=d£¨23n-1£©£®
ËùÒÔ$\left\{\begin{array}{l}{G=£¨{2}^{n}+1£©•D}\\{H=£¨{2}^{3n}+{2}^{n}+1£©•D}\end{array}\right.$£¬
Òò´ËH=D•£¨$\frac{G}{D}$-1£©2+G=$\frac{{G}^{2}}{D}$+2D-G£®

µãÆÀ ±¾Ì⿼²éµÈ±È¡¢µÈ²îÊýÁеÄͨÏʽ¼°Ó¦Óã¬ÊýÁеÄÇóºÍ£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÄѶȽϴóµÄÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖª¼¯ºÏU=R£¬º¯Êýf£¨x£©=$\sqrt{x-3}$-$\frac{1}{\sqrt{7-x}}$µÄ¶¨ÒåÓòΪ¼¯ºÏA£¬¼¯ºÏB={x|2¡Üx£¼10}£¬¼¯ºÏC={x|x£¾a}£®
£¨1£©ÇóA£¬£¨∁UA£©¡ÉB£»
£¨2£©Èô£¨∁UB£©¡ÈC=R£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Ä³ÊмÒͥúÆøµÄʹÓÃÁ¿xcm3ºÍȼÆø·Ñf£¨x£©£¨Ôª£©Âú×ã¹Øϵ$f£¨x£©=\left\{\begin{array}{l}C£¬0£¼x¡ÜA\\ C+B£¨{x-A}£©£¬x£¾A\end{array}\right.$£¬ÒÑ֪ij¼ÒÍ¥½ñÄêÇ°Èý¸öÔµÄȼÆø·ÑÈç±í£º
 Ô·ݠÓÃÆøÁ¿ÃºÆø·Ñ
 Ò»Ô·ݠ4m3 4Ôª
 ¶þÔ·ݠ25m3 14Ôª
 ÈýÔ·Ý35m3 19Ôª
ÈôËÄÔ·ݸüÒͥʹÓÃÁË20cm3µÄúÆø£¬ÔòÆäȼÆø·ÑΪ11.5Ôª£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®¼×¡¢ÒÒ¡¢±ûÈýÃûÉä»÷Ô˶¯Ô±ÉäÖÐÄ¿±êµÄ¸ÅÂÊ·Ö±ðΪ$\frac{1}{2}$¡¢a¡¢a£¨0£¼a£¼1£©£¬ÈýÈ˸÷Éä»÷Ò»´Î£¬»÷ÖÐÄ¿±êµÄ´ÎÊý¼ÇΪ¦Î£®ÔÚ¸ÅÂÊP£¨¦Î=i£©£¨i=0£¬1£¬2£¬3£©ÖУ¬ÈôP£¨¦Î=1£©µÄÖµ×î´ó£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ$£¨0£¬\frac{1}{2}]$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬SnΪÆäÇ°nÏîºÍ£¬¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬Âú×ã¹Øϵʽ2Sn=3an-3£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÉèÊýÁÐ{bn}µÄͨÏʽÊÇbn=$\frac{1}{lo{g}_{3}{a}_{n}£¨lo{g}_{3}{{a}_{n}}^{2}+1£©}$£¬ÇóÖ¤¶ÔÒ»ÇеÄÕýÕûÊýn¶¼ÓУºb1+b2+¡­+bn£¼$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Ä³µØÇø100λ¾ÓÃñµÄÈ˾ùÔÂÓÃË®Á¿£¨µ¥Î»£ºt£©µÄƵÂÊ·Ö²¼Ö±·½Í¼¼°ÆµÊý·Ö²¼±íÈçÏ£º
·Ö×éƵÊý
[0£¬0.5£©4
[0.5£¬1£©8
[1£¬1.5£©15
[1.5£¬2£©22
[2£¬2.5£©25
[2.5£¬3£©14
[3£¬3.5£©6
[3.5£¬4£©4
[4£¬4.5£©2
ºÏ¼Æ100
£¨1£©¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼¹À¼ÆÕâ×éÊý¾ÝµÄÖÚÊýÓëƽ¾ùÊý£»
£¨2£©µ±µØÕþ¸®Öƶ¨ÁËÈ˾ùÔÂÓÃË®Á¿Îª3tµÄ±ê×¼£¬Èô³¬³ö±ê×¼¼Ó±¶ÊÕ·Ñ£¬µ±µØÕþ¸®½âÊÍ˵£¬85%ÒÔÉϵľÓÃñ²»³¬³öÕâ¸ö±ê×¼£¬Õâ¸ö½âÊͶÔÂð£¿ÎªÊ²Ã´£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=|x-1|-|2x+m|£¬m¡ÊR£®
£¨1£©µ±m=-4ʱ£¬½â²»µÈʽf£¨x£©£¼0£»
£¨2£©µ±x¡Ê£¨1£¬+¡Þ£©Ê±£¬f£¨x£©£¼0ºã³ÉÁ¢£¬ÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®¹ØÓÚxµÄº¯Êýy=ax£¬y=xa£¬y=loga£¨x-1£©£¬ÆäÖÐa£¾0£¬a¡Ù1£¬ÔÚµÚÒ»ÏóÏÞÄÚµÄͼÏóÖ»¿ÉÄÜÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÃüÌâP£º2016¡Ü2017£¬ÔòÏÂÁйØÓÚÃüÌâP˵·¨ÕýÈ·µÄÊÇ£®£¨¡¡¡¡£©
A£®ÃüÌâPʹÓÃÁËÂß¼­Áª½á´Ê¡°»ò¡±£¬ÊǼÙÃüÌâ
B£®ÃüÌâPʹÓÃÁËÂß¼­Áª½á´Ê¡°ÇÒ¡±£¬ÊǼÙÃüÌâ
C£®ÃüÌâPʹÓÃÁËÂß¼­Áª½á´Ê¡°·Ç¡±£¬ÊǼÙÃüÌâ
D£®ÃüÌâPʹÓÃÁËÂß¼­Áª½á´Ê¡°»ò¡±£¬ÊÇÕæÃüÌâ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸