精英家教网 > 高中数学 > 题目详情

【题目】某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如下的频率分布直方图:

1)根据频率分布直方图,求这个零件尺寸的中位数(结果精确到);

2)若从这个零件中尺寸位于之外的零件中随机抽取个,设表示尺寸在上的零件个数,求的分布列及数学期望

3)已知尺寸在上的零件为一等品,否则为二等品,将这个零件尺寸的样本频率视为概率. 现对生产线上生产的零件进行成箱包装出售,每箱. 企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为. 若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付元的赔偿费用. 现对一箱零件随机抽检了个,结果有个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.

【答案】1;(2)分布列见详解,期望为;(3)余下所有零件不用检验,理由见详解.

【解析】

1)计算的频率,并且与进行比较,判断中位数落在的区间,然后根据频率的计算方法,可得结果.

2)计算位于之外的零件中随机抽取个的总数,写出所有可能取值,并计算相对应的概率,列出分布列,计算期望,可得结果.

3)计算整箱的费用,根据余下零件个数服从二项分布,可得余下零件个数的期望值,然后计算整箱检验费用与赔偿费用之和的期望值,进行比较,可得结果.

1)尺寸在的频率:

尺寸在的频率:

所以可知尺寸的中位数落在

假设尺寸中位数为

所以

所以这个零件尺寸的中位数

2)尺寸在的个数为

尺寸在的个数为

的所有可能取值为1234

所以的分布列为

3)二等品的概率为

如果对余下的零件进行检验则整箱的检验费用为

(元)

余下二等品的个数期望值为

如果不对余下的零件进行检验,

整箱检验费用与赔偿费用之和的期望值为

(元)

所以,所以可以不对余下的零件进行检验.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,D的中点.

1)证明:平面

2)若是边长为2的正三角形,且,平面平面.求平面与侧面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中e为自然对数的底数.

(1)若,且当时,总成立,求实数a的取值范围;

(2)若,且存在两个极值点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线)上的两个动点,焦点为F.线段AB的中点为,且AB两点到抛物线的焦点F的距离之和为8.


1)求抛物线的标准方程;

2)若线段AB的垂直平分线与x轴交于点C,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,有下列四个结论:

为偶函数;②的值域为

上单调递减;④上恰有8个零点,

其中所有正确结论的序号为(

A.①③B.②④C.①②③D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是偶函数,且在R上有导函数,若对都有,则关于函数的四个判断:①若函数在处有定义,则;②;③是周期函数;④若函数在处有定义,则.其中正确的判断有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数有下述四个结论:

①函数的图象把圆的面积两等分;

是周期为的函数;

③函数在区间上有个零点;

④函数在区间上单调递减.

则正确结论的序号为_______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc为正实数,且满足a+b+c1.证明:

1|a|+|b+c1|

2)(a3+b3+c3)(≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1),求函数的所有零点;

(2),证明函数不存在极值.

查看答案和解析>>

同步练习册答案