分析 求出抛物线的焦点坐标F,用点斜式设出直线方程与抛物线方程联解得一个关于x的一元二次方程,利用根与系数的关系结合曲线的弦长的公式,可以求出线段AB的长度.
解答 解:根据抛物线$y=\frac{1}{4}{x^2}$方程得:焦点坐标F(0,1),
直线AB的斜率为k=tan30°=$\frac{\sqrt{3}}{3}$,
由直线方程的点斜式方程,设AB:y-1=$\frac{\sqrt{3}}{3}$x
将直线方程代入到抛物线$y=\frac{1}{4}{x^2}$中,得:$\frac{1}{4}$x2-$\frac{\sqrt{3}}{3}$x-1=0.
设A(x1,y1),B(x2,y2)
由一元二次方程根与系数的关系得:x1+x2=$\frac{4\sqrt{3}}{3}$.
x1x2=-4.
弦长|AB|=$\sqrt{1+(\frac{\sqrt{3}}{3})^{2}}|{x}_{2}-{x}_{1}|$=$\frac{2\sqrt{3}}{3}•\sqrt{(\frac{4\sqrt{3}}{3})^{2}+16}$=$\frac{16}{3}$.
故答案为:$\frac{16}{3}$.
点评 本题以抛物线为载体,考查了圆锥曲线的弦长问题,属于中档题.本题运用了直线方程与抛物线方程联解的方法,对运算的要求较高.利用一元二次方程根与系数的关系和弦长公式是解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | 1-i | B. | 1+i | C. | -1+i | D. | -1-i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-1,2] | B. | [0,2] | C. | [-1,3] | D. | [0,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ∅ | B. | [-2,0) | C. | [0,2] | D. | {0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (x-1)2+(y+1)2=9 | B. | (x-1)2+(y+1)2=3 | C. | (x+1)2+(y-1)2=9 | D. | (x+1)2+(y-1)2=3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com