分析 作出不等式组对应的平面区域,利用目标函数的几何意义进行求解即可.
解答 解:作出不等式组对应的平面区域如图:
由z=-$\frac{1}{3}$x+y得y=$\frac{1}{3}$x+z,
平移直线y=$\frac{1}{3}$x+z,由图象知,当直线y=$\frac{1}{3}$x+z经过点A时,
直线的距离最小,此时z最小,
由$\left\{\begin{array}{l}{x+y-1=0}\\{x-y-2=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=-\frac{1}{2}}\end{array}\right.$,即A($\frac{3}{2}$,-$\frac{1}{2}$),
此时z=-$\frac{1}{3}$×$\frac{3}{2}$-$\frac{1}{2}$=-$\frac{1}{2}$-$\frac{1}{2}$=-1,
故答案为:-1
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合是解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | $\frac{x^2}{4}-\frac{y^2}{12}=1$ | B. | $\frac{x^2}{4}-\frac{y^2}{12}=1(x>2)$ | C. | y2=8x | D. | y2=8x(x≠0) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,2) | B. | (-∞,2] | C. | $[{\frac{1}{2},+∞})$ | D. | $[{\frac{1}{4},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,+∞) | B. | (2,+∞) | C. | ∅ | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ①② | B. | ①③ | C. | ①②③ | D. | ①②③④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com