精英家教网 > 高中数学 > 题目详情
1.若实数x,y满足$\left\{\begin{array}{l}{x+y-1≥0}\\{x-y-2≤0}\\{y≤1}\end{array}\right.$,则z=-$\frac{1}{3}$x+y的最小值为-1.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义进行求解即可.

解答 解:作出不等式组对应的平面区域如图:
由z=-$\frac{1}{3}$x+y得y=$\frac{1}{3}$x+z,
平移直线y=$\frac{1}{3}$x+z,由图象知,当直线y=$\frac{1}{3}$x+z经过点A时,
直线的距离最小,此时z最小,
由$\left\{\begin{array}{l}{x+y-1=0}\\{x-y-2=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=-\frac{1}{2}}\end{array}\right.$,即A($\frac{3}{2}$,-$\frac{1}{2}$),
此时z=-$\frac{1}{3}$×$\frac{3}{2}$-$\frac{1}{2}$=-$\frac{1}{2}$-$\frac{1}{2}$=-1,
故答案为:-1

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若动圆C过定点A(4,0),且在y轴上截得弦MN的长为8,则动圆圆心C的轨迹方程是(  )
A.$\frac{x^2}{4}-\frac{y^2}{12}=1$B.$\frac{x^2}{4}-\frac{y^2}{12}=1(x>2)$C.y2=8xD.y2=8x(x≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.复数i(1+i)(i是虚数单位)的虚部是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若Sn是等差数列{an}的前n项和,且$\frac{S_8}{8}=\frac{S_6}{6}+10$,则$\lim_{n→∞}\frac{S_n}{n^2}$=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,点A、B分别是角α、β的终边与单位圆的交点,$0<β<\frac{π}{2}<α<π$.
(1)若$α=\frac{3}{4}π$,$cos({α-β})=\frac{2}{3}$,求sin2β的值;
(2)证明:cos(α-β)=cosαcosβ+sinαsinβ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=ax-lnx在(2,+∞)上单调递增,则实数a的取值范围是(  )
A.(-∞,2)B.(-∞,2]C.$[{\frac{1}{2},+∞})$D.$[{\frac{1}{4},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A、B、C的对边分别为a、b、c,且csinC-bsinB=(a-b)sinA.
(1)求角C;
(2)若c=5,a+b=7,求△A BC面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.集合A={x|y=lg(x-1)},$B=\left\{{y|y=}\right.x+\frac{1}{x},x>0\left.{\;}\right\}$,则A∩B=(  )
A.(0,+∞)B.(2,+∞)C.D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.计算下列几个式子:①tan25°+tan35°+$\sqrt{3}$tan25°tan35°,②2(sin35°cos25°+sin55°cos65°),③$\frac{1+tan15°}{1-tan15°}$④$\frac{tan\frac{π}{3}}{1-ta{n}^{2}\frac{π}{3}}$,结果为$\sqrt{3}$的是(  )
A.①②B.①③C.①②③D.①②③④

查看答案和解析>>

同步练习册答案