【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系中,已知直线: (为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)设点的极坐标为,直线与曲线的交点为, ,求的值.
科目:高中数学 来源: 题型:
【题目】已知空间几何体中, 与均为边长为的等边三角形, 为腰长为的等腰三角形,平面平面,平面平面.
(Ⅰ)试在平面内作一条直线,使得直线上任意一点与的连线均与平面平行,并给出详细证明;
(Ⅱ)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某公司随即抽取人对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的人中的性别以及意见进行了分类,得到的数据如下表所示:
男 | 女 | 总计 | |
认为共享产品对生活有益 | |||
认为共享产品对生活无益 | |||
总计 |
(1)根据表中的数据,能否在犯错误的概率不超过的前提下,认为对共享产品的态度与性别有关系?
(2)现按照分层抽样从认为共享产品增多对生活无益的人员中随机抽取人,再从人中随机抽取人赠送超市购物券作为答谢,求恰有人是女性的概率.
参与公式:
临界值表:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的方程是,圆的参数方程是(为参数),以原点为极点, 轴的非负半轴为极轴建立极坐标系.
(1)分别求直线与圆的极坐标方程;
(2)射线: ()与圆的交点为, 两点,与直线交于点,射线: 与圆交于, 两点,与直线交于点,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com