精英家教网 > 高中数学 > 题目详情
2.若实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y-4≥0}\\{2x+y-5≤0}\end{array}\right.$且3(x-a)+2(y+1)的最大值为5,则a等于(  )
A.-2B.-1C.2D.1

分析 画出约束条件的可行域,利用目标函数的几何意义,在可行域中找出最优点,然后求解即可.

解答 解:实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y-4≥0}\\{2x+y-5≤0}\end{array}\right.$,不是的可行域如图:
3(x-a)+2(y+1)=3x+2y+2-3a的最大值为:5,由可行域可知z=3x+2y+2-3a,经过A时,z取得最大值,
由$\left\{\begin{array}{l}{x-y+2=0}\\{2x+y-5=0}\end{array}\right.$,可得A(1,3)可得3+6+2-3a=5,
解得a=2.
故选:C.

点评 本题考查线性规划的简单应用,考查目标函数的最值的求法,考查数形结合以及转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数y=f(x)(x∈R)且在[0,+∞)上是增函数,g(x)=f(|x|),若g(2x-1)<g(2),则x的取值范围是(  )
A.(-$\frac{1}{2}$,$\frac{3}{2}$)B.(-∞,$\frac{3}{2}$)C.($\frac{3}{2}$,+∞)D.(-∞,$-\frac{1}{2}$)∪($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知正三棱柱ABC-A1B1C的各条棱长都为a,P为A1B的中点,M为AB的中点,
(1)求证:AB⊥平面PMC;
(2)求点B到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直线3x+4y-4=0与圆x2+y2+6x-4y=0相交所得弦的长为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=ax-b(a>0且a≠1)的图象如图1所示,则函数y=cosax+b的图象可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=(x-b)lnx(b∈R)在区间[1,e]上单调递增,则实数b的取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点P($\sqrt{2}$,1)和椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1.
(1)设椭圆的两个焦点分别为F1,F2,试求△PF1F2的周长及椭圆的离心率;
(2)若直线l:$\sqrt{2}$x-2y+m=0(m≠0)与椭圆C交于两个不同的点A,B,设直线PA与PB的斜率分别为k1,k2,求证:k1+k2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若tanα=3tan$\frac{π}{5}$,则$\frac{cos(α-\frac{3π}{10})}{sin(α-\frac{π}{5})}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设F1,F2是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),的左右焦点,离心率为$\frac{\sqrt{2}}{2}$,M为椭圆上的动点,|MF1|的最大值为1$+\sqrt{2}$.
(Ⅰ)求椭圆C的方程.
(Ⅱ)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P,求证:|PF1|+|PF2|是定值.

查看答案和解析>>

同步练习册答案