精英家教网 > 高中数学 > 题目详情
已知sin(
2
+α)=
2
5
,则cosα的值为(  )
A、
2
5
B、-
2
5
C、±
21
5
D、±
2
5
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:运用诱导公式即可化简求值.
解答: 解:sin(
2
+α)=sin(2π+
π
2
+α)=cosα=
2
5

故选:A.
点评:本题主要考察了运用诱导公式化简求值,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0且a≠1,求满足loga
3
5
<1的a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinx+cosx=
7
5
,x∈[
π
4
4
],则sinx-cosx等于(  )
A、±
1
5
B、-
1
5
C、
7
5
D、
1
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=6,|
b
|=4,
a
b
的夹角为120°,则(
a
+2
b
)•(
a
-3
b
)的值是(  )
A、-81B、144
C、-48D、-72

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α为第四象限的角,且cos(
π
2
+α)=
4
5
则tanα=(  )
A、-
4
3
B、
3
4
C、-
3
4
D、
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若幂函数的图象经过点(
33
,3),则该函数的解析式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+y2
=1的左、右焦点分别为F1,F2,点P在椭圆上,当△F1PF2的面积为1时,
PF1
PF2
=(  )
A、0
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

只是2问,用空间向量啊!以c为坐标原点哦!
如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2
2
.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.
(1)证明:PQ∥平面BCD;
(2)若二面角C-BM-D的大小为60°,求∠BDC的大小.
(用空间向量解答,以C为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行四边形ABCD中,AC=
3
BD,则∠DAB的最大值为
 

查看答案和解析>>

同步练习册答案