精英家教网 > 高中数学 > 题目详情

【题目】已知函数(a为常数)的图象与轴交于点,曲线在点处的切线斜率为

(1)的值及函数的极值;

(2)证明:当时,

【答案】(1)x=ln2时,f(x)取得极小值,且极小值为f(ln2)=2-ln4,f(x)无极大值.(2)见解析

【解析】试题分析:(1)首先求点的坐标,再根据,解得的值,然后求值,以及两侧的单调性,根据单调性求得函数的极值;(2)设函数 ,根据(1)的结果可知函数单调递增,即证.

试题解析: (1)f(x)=exax,得f′(x)=exa. f′(0)=1-a=-1,得a=2.

所以f(x)=ex-2xf′(x)=ex-2. f′(x)=0,得x=ln2.

x<ln2时,f′(x)<0,f(x)单调递减;当x>ln2时,f′(x)>0,f(x)单调递增.

所以当x=ln2时,f(x)取得极小值,且极小值为f(ln2)=eln2-2ln2=2-ln4,f(x)无极大值.

(2)g(x)=exx2,则g′(x)=ex-2x. (1)g′(x)=f(x)≥f(ln2)>0,

g(x)R上单调递增,又g(0)=1>0,因此,当x>0时,g(x)>g(0)>0,即x2<ex.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数 同时满足以下两个条件:
x∈R,f(x)<0或g(x)<0;
x∈(﹣1,1),f(x)g(x)<0.
则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙O的方程为x2+y2=10.
(1)求直线:x=1被⊙O截的弦AB的长;
(2)求过点(﹣3,1)且与⊙O相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣1:平面几何
如图AB是⊙O的直径,弦BD,CA的延长线相交于点E,EF垂直BA的延长线于点F.

(1)求证:∠DEA=∠DFA;
(2)若∠EBA=30°,EF= ,EA=2AC,求AF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校有120名教师,且年龄都在20岁到60岁之间,各年龄段人数按分组,其频率分布直方图如图所示,学校要求每名教师都要参加两项培训,培训结束后进行结业考试.已知各年龄段两项培训结业考试成绩优秀的人数如表示,假设两项培训是相互独立的,结业考试成绩也互不影响.

年龄分组

A项培训成绩优秀人数

B项培训成绩优秀人数

[20,30)

30

18

[30,40)

36

24

[40,50)

12

9

[50,60]

4

3


(1)若用分层抽样法从全校教师中抽取一个容量为40的样本,求从年龄段[20,30)抽取的人数;
(2)求全校教师的平均年龄;
(3)随机从年龄段[20,30)和[30,40)内各抽取1人,设这两人中两项培训结业考试成绩都优秀的人数为X,求X的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设P(x0,y0)是函数f(x)图象上任意一点,且y02≥x02,则f(x)的解析式可以是_____.(填序号)

①f(x)=x﹣②f(x)=ex﹣1(e≈2.718,是一个重要常数)③f(x)=x+④y=x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数是奇函数.

(1)a,b的值;

(2)解关于t的不等式f(t2-2t)+f(2t2-1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|2x﹣a|﹣1.

①当a=0时,不等式f(x)+1>0的解集为_____

②若函数f(x)有三个不同的零点,则实数a的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中_________为真命题.

①“A∩B=A”成立的必要条件是“AB”w ②“x2+y2=0,则xy全为0”的否命题;

③“全等三角形是相似三角形的逆命题; ④“圆内接四边形对角互补的逆否命题.

查看答案和解析>>

同步练习册答案