精英家教网 > 高中数学 > 题目详情

数学公式,(a,b为常数).当x>0时,F(x)=f(x),且F(x)为R上的奇函数.
(Ⅰ)若数学公式,且f(x)的最小值为0,求F(x)的表达式;
(Ⅱ)在(Ⅰ)的条件下,数学公式在[2,4]上是单调函数,求k的取值范围.

解:(1)f(x)=alog22x+blog2x+1
得a-b+1=0,
∴f(x)=alog22x+(a+1)log2x+1
若a=0则f(x)=log2x+1无最小值.
∴a≠0.
欲使f(x)取最小值为0,只能使,知a=1,b=2.
∴f(x)=log22x+2log2x+
设x<0则-x>0,
∴F(x)=f(-x)=log22(-x)+2log2(-x)+1
又F(-x)=-F(x),
∴F(x)=-log22(-x)-2log2(-x)-1
又F(0)=0∴
(2)=.x∈[2,4].
得log2x=t.则,t∈[1,2].
∴当k≤0,或时,y为单调函数.
综上,k≤1或k≥4.
分析:(1)根据可消去b,再由f(x)的最小值为0确定f(x)的解析式,最后求出F(x)的解析式.
(2)根据(1)先将g(x)的解析式化简为,再将t=log2x代入进行换元,可得答案.
点评:主要考查求函数解析式的问题.本题属于较难类型的题.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年安徽省黄山市屯溪一中高三(上)10月月考数学试卷(理科)(解析版) 题型:解答题

设函数(a,b为常数),且方程有两个实根为x1=-1,x2=2,
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省黄山市屯溪一中高三(上)10月月考数学试卷(理科)(解析版) 题型:解答题

设函数(a,b为常数),且方程有两个实根为x1=-1,x2=2,
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省郑州市新密二高高三(上)第一次月考数学试卷(解析版) 题型:解答题

设函数(a,b为常数),且方程有两个实根为x1=-1,x2=2,
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省株洲二中高三(下)第十次月考数学试卷(文科)(解析版) 题型:解答题

,(a,b为常数).当x>0时,F(x)=f(x),且F(x)为R上的奇函数.
(Ⅰ)若,且f(x)的最小值为0,求F(x)的表达式;
(Ⅱ)在(Ⅰ)的条件下,在[2,4]上是单调函数,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012年云南省曲靖市宣威市高三第一次调研摸底数学试卷(理科)(解析版) 题型:解答题

设函数(a,b为常数),且方程有两个实根为x1=-1,x2=2,
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心.

查看答案和解析>>

同步练习册答案