精英家教网 > 高中数学 > 题目详情
(2012•四川)下列命题正确的是(  )
分析:利用直线与平面所成的角的定义,可排除A;利用面面平行的位置关系与点到平面的距离关系可排除B;利用线面平行的判定定理和性质定理可判断C正确;利用面面垂直的性质可排除D
解答:解:A,若两条直线和同一个平面所成的角相等,则这两条直线平行、相交或异面;排除A;
B,若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行或相交,排除B;
C,设平面α∩β=a,l∥α,l∥β,由线面平行的性质定理,在平面α内存在直线b∥l,在平面β内存在直线c∥l,所以由平行公理知b∥c,从而由线面平行的判定定理可证明b∥β,进而由线面平行的性质定理证明得b∥a,从而l∥a;故C正确;
D,若两个平面都垂直于第三个平面,则这两个平面平行或相交,排除D;
故选 C
点评:本题主要考查了空间线面平行和垂直的位置关系,线面平行的判定和性质,面面垂直的性质和判定,空间想象能力,属基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•四川)设a,b为正实数,现有下列命题:
①若a2-b2=1,则a-b<1;
②若
1
b
-
1
a
=1
,则a-b<1;
③若|
a
-
b
|=1
,则|a-b|<1;
④若|a3-b3|=1,则|a-b|<1.
其中的真命题有
①④
①④
.(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•四川)设
a
b
都是非零向量,下列四个条件中,使
a
|
a
|
=
b
|
b
|
成立的充分条件是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•四川)记[x]为不超过实数x的最大整数,例如,[2]=2,[1.5]=1,[-0.3]=-1.设a为正整数,数列{xn}满足x1=a,xn+1=[
xn+[
a
xn
]
2
](n∈N*)
,现有下列命题:
①当a=5时,数列{xn}的前3项依次为5,3,2;
②对数列{xn}都存在正整数k,当n≥k时总有xn=xk
③当n≥1时,xn
a
-1

④对某个正整数k,若xk+1≥xk,则xk=[
a
]

其中的真命题有
①③④
①③④
.(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

2012·四川卷] 下列命题正确的是(  )

A.若两条直线和同一个平面所成的角相等,则这两条直线平行

B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行

C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行

D.若两个平面都垂直于第三个平面,则这两个平面平行

查看答案和解析>>

同步练习册答案