精英家教网 > 高中数学 > 题目详情

设f(x)=3ax2-2bx+c,若a-b+c=0,f(0)>0,f(1)>0.
(1)求证:方程f(x)=0在区间(0,1)内有两个不等的实数根;
(2)若a,b,c都为正整数,求a+b+c的最小值.

证明:(1)f(0)=c>0①,
f(1)=3a-2b+c>0②,a-b+c=0③,
由①③得:a-b<0?a<b④,由②③得:2a-b>0?2a>b⑤,
由④⑤得:2a>b>a⑥,∵b=a+c代入②得:a>c∴a>0
∴由⑤得:…(4分)
∵对称轴
又f(0)>0,f(1)>0
且△=4b2-12ac=4(a+c)2-12ac=(2a-c)2+3c2>0
∴方程f(x)=0在(0,1)内有两个不等实根.…(10分)
(2)若a,b,c都为正整数,f(0)、f(1)都是正整数,
设f(x)=3a(x-x1)(x-x2),其中x1,x2是f(x)=0的两根,
则x1,x2∈(0,1),且x1≠x2

∴9a2>16,a为正整数,
∴a≥2,
∴a+b+c≥2+(2+c)+c=4+2c≥6…(15分)
若取a=2,则得:b∈(2,4)
∵b为正整数,∴b=3,c=b-a=1f(x)=6x2-6x+1=0的两根都在区间(0,1)内,
∴a+b+c的最小值为6.…(18分)
分析:(1)f(0)=c>0①,f(1)=3a-2b+c>0,所以a-b+c=0,由此得:a-b<0?a<b,由2a-b>0?2a>b,2a>b>a.b=a+ca>c.方程f(x)=0在区间(0,1)内有两个不等的实数根;
(2)若a,b,c都为正整数,f(0)、f(1)都是正整数,设f(x)=3a(x-x1)(x-x2),由此能求出a+b+c的最小值.
点评:本题考查二次函数的综合运用,解题时要认真审题,仔细解答,注意韦达定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=3ax2+2bx+c.若a+b+c=0,f(0)>0,f(1)>0,求证:
(Ⅰ)a>0且-2<
ba
<-1

(Ⅱ)方程f(x)=0在(0,1)内有两个实根.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=3ax2+2bx+c,若a+b+c=0,f(0)f(1)>0,求证:
(Ⅰ)方程f(x)=0有实根.
(Ⅱ)-2<
a
b
<-1;设x1,x2是方程f(x)=0的两个实根,则.
3
3
≤|x1-x2|<
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0,求证:a>0且-2<
ba
<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=3ax2+2bx+c(a≠0),若a+b+c=0,f(0)•f(1)>0,求证:
(I) -2<
b
a
<-1

(II) 设x1,x2是方程f(x)=0的两个实根,则
3
3
≤|x1-x2|<
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=3ax2+2bx+c(a≠0),若a+b+c=0,f(0)f(1)>0,求证:
(1)方程f(x)=0有实数根;
(2)-2<
b
a
<-1;
(3)设x1,x2是方程f(x)=0的两个实数根,则
3
3
≤|x1-x2|
3
2

查看答案和解析>>

同步练习册答案