精英家教网 > 高中数学 > 题目详情
(12分)我们把同时满足下列两个性质的函数称为“和谐函数” :
①函数在整个定义域上是单调增函数或单调减函数;
②在函数的定义域内存在区间,使得函数在区间上的值域为.
⑴已知幂函数的图像经过点,判断是否是和谐函数?
⑵判断函数是否是和谐函数?
⑶若函数是和谐函数,求实数的取值范围.
(1)是和谐函数。(2)不是和谐函数。(3) .

试题分析:. (1)设,由,得
上是增函数,
,得
是和谐函数。                 ………………………4分
⑵易得上的减函数,
① 若,相减得矛盾;
② 若矛盾;
③ 若矛盾。
不是和谐函数。               ………………………………………8分
上是增函数,
由函数是和谐函数知, 函数内存在区间,使得函数在区间上的值域为.

是方程在区间内的两个不等实根
在区间内的两个不等实根,
         ………………………12分
点评:(1)此题以新定义为背景,来考查函数的综合应用。考查了学生分析问题、解决问题的能力以及分类讨论的数学思想。(2)设一元二次方程)的两个实根为,且
① (两个正根)
② (两个负根)
③ (一个正根一个负根)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

,则(   )
A.2B.4C.D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分12分)
某市居民生活用水标准如下:
用水量t(单位:吨)
每吨收费标准(单位:元)
不超过2吨部分
m
超过2吨不超过4吨部分
3
超过4吨部分
n
已知某用户1月份用水量为3.5吨,缴纳水费为7.5元;2月份用水量为6吨,缴纳水费为21元.设用户每月缴纳的水费为y元.
(1)写出y关于t的函数关系式;
(2)某用户希望4月份缴纳的水费不超过18元,求该用户最多可以用多少吨水?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)
,其中.
(1) 若,求的值;
(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列式子正确的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在区间上不是增函数的是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知映射,在映射的原象是(  ) 
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义域是一切实数的函数,其图像是连续不断的,且存在常数()
使得对任意实数都成立,则称是一个“—伴随函数”. 有
下列关于“—伴随函数”的结论:
是常数函数中唯一一个“—伴随函数”;
②“—伴随函数”至少有一个零点;
是一个“—伴随函数”;
其中正确结论的个数是 (    )
A.1个;B.2个;C.3个;D.0个;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)设,写出数列的前5项;
(Ⅱ)解不等式

查看答案和解析>>

同步练习册答案