精英家教网 > 高中数学 > 题目详情
6.设关于x的方程是x2-(tanθ+i)x-(2+i)=0.
(1)若方程有实数根,求锐角θ和实数根;
(2)证明:对任意θ≠kπ+$\frac{π}{2}$(k∈Z),方程无纯虚数根.

分析 (1)先将原方程可化为x2-xtanθ-2-(x+1)i=0,再根据复数相等的条件得出左边复数的实部与虚数都为0得到关于θ的方程组,解之即得.
(2)利用反证法证明方程有纯虚数根,推出矛盾即可.

解答 解:(1)原方程可化为x2-xtanθ-2-(x+1)i=0,方程有实数根,设为x,
∴$\left\{\begin{array}{l}{x}^{2}-xtanθ-2=0\\ x+1=0\end{array}\right.$.
又θ是锐角,解得x=-1,
故θ=$\frac{π}{4}$.
(2)证明:假设方程有纯虚数根,可设根为bi,b≠0,b∈R,
则x2-(tanθ+i)x-(2+i)=0化为-b2-(tanθ+i)bi-(2+i)=0,
即-b2-ibtanθ-2+b-i=0,可得-b2-2+b=0,解得b=$\frac{1±\sqrt{7}i}{2}$∉R,
与假设矛盾,
所以方程无纯虚数根.

点评 本小题主要考查复数的基本概念、一元二次方程的解法等基础知识,考查运算求解能力与化归与转化思想.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.数列{an},an=n2-λn,若{an}为递增数列,则λ的取值范围是(-∞,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=ln(x+a)-$\frac{1}{2}$ax2,a∈R,求f(x)单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.数列{an}中,a1=1,an+an+1=($\frac{1}{4}$)n,Sn=a1+4a2+42a3+…+4n-1an,类比课本中推导等比数列前项和公式的方法,可求得5Sn-4nan=n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.关于x的不等式x2-2x+3>0解集为(  )
A.(-1,3)B.C.RD.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2sin(x+φ)(0<φ<$\frac{π}{2}$),且f($\frac{π}{3}$)=2.
(1)求φ的值;
(2)若f(θ)+f(-θ)=$\frac{8}{5}$,θ∈(0,$\frac{π}{2}$),求f(2θ-$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知直线L1:(3+m)x+4y=5-3m与直线L2:2x+(6+m)y=8垂直,则m的值为(  )
A.5B.-5C.3D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,$\overrightarrow{c}$=$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{d}$=m$\overrightarrow{a}$-6$\overrightarrow{b}$(m∈R).若$\overrightarrow{c}$∥$\overrightarrow{d}$,|$\overrightarrow{c}$+$\overrightarrow{d}$|=5$\sqrt{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设$f(x)={x^3}-\frac{1}{2}{x^2}-2x+5$,当x∈[1,2]时,f(x)-m<0恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案