精英家教网 > 高中数学 > 题目详情
已知O为坐标原点,A(1,1),C(2,3)且,则的坐标是   
【答案】分析:设出点B(x,y)的坐标,跟军条件将向量用坐标表示出来,利用向量相等建立x,y的方程求出x,y的值,即得点B的坐标,再选出正确选项.
解答:解:设B(x,y),∵A(1,1),C(2,3)且
∴2(1,2)=(x-2,y-3),
,解得,则B(4,7),
=(4,7),
故答案为:(4,7).
点评:本题主要考查向量的坐标运算,以及向量相等的应用,解题的关键是求出各个向量的坐标,再根据向量相等建立方程组求出所引入的参数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O为坐标原点,A(0,2),B(4,6),
OM
=t1
OA
+t2
AB

(1)求点M在第二或第三象限的充要条件;
(2)求证:当t1=1时,不论t2为何实数,A、B、M三点都共线;
(3)若t1=a2,求当
OM
AB
且△ABM的面积为12时,a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,A,B是圆x2+y2=1分别在第一、四象限的两个点,C(5,0)满足:
OA
OC
=3
OB
OC
=4
,则
OA
+t
OB
+
OC
(t∈R)
模的最小值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,A(0,2),B(4,6),
OM
=t1
OA
+t2
AB

(1)求证:当t1=1时,不论t2为何实数,A、B、M三点都共线;
(2)若t1=a2,求当
OM
AB
且△ABM的面积为12时a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江二模)已知O为坐标原点,A(1,1),C(2,3)且2
AC
=
CB
,则
OB
的坐标是
(4,7)
(4,7)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,A(0,1),B(3,4),
OM
=t1
OA
+t2
AB

(1)求点M在第二象限或第三象限的充要条件;
(2)求证:当t1=1时,不论t2为何实数,A、B、M三点都共线;
(3)若t1=2,求当点M为∠AOB的平分线上点时t2的值.

查看答案和解析>>

同步练习册答案