精英家教网 > 高中数学 > 题目详情
(本小题满分13分)(第一问8分,第二问5分)
已知函数f(x)=2lnxg(x)=ax2+3x.
(1)设直线x=1与曲线yf(x)和yg(x)分别相交于点PQ,且曲线yf(x)和yg(x)在点PQ处的切线平行,若方程f(x2+1)+g(x)=3xk有四个不同的实根,求实数k的取值范围;
(2)设函数F(x)满足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.
解:(1)f′(1)=2,且P(1,0),∴f(x)在P点处的切线方程为y=2(x-1),
即2xy-2=0…………………………………………………………………………(2分)
g′(1)=a+3,∴a=-1.…………………………………………………………(3分)
g(x)=-x2+3x,则方程f(x2+1)+g(x)=3xk可化为
ln(x2+1)-x2k.令y1=ln(x2+1)-x2,则x=-
=0得x=-1,0,1.因此y的变化情况如下表:
x
(-∞,-1)
-1
(-1,0)
0
(0,1)
1
(1,+∞)


0

0

0

y

极大值

极小值

极大值

且(y1)极大值=ln2-,(y1)极小值=0.……………………………………………………(6分)
又∵方程有四个不同实数根,函数y=ln(x2+1)-x2为偶函数,且当x2+1=e3(x>1)时,ln(x2+1)-x2=3-(e3-1)=e3<0=(y1)极小值,所以0<k<ln2-.……………………………………………………………………………………………(8分)
(2)∵F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.
F(x)=(a-3)x2-(a+3)x-1.………………………………………………………(9分)
①当a=3时,F(x)=-6x-1在(0,1]上是减函数,可知F(x)取不到最大值.
②当a<3时,F(x)的对称轴为x,若x∈(0,1]时,F(x)取得最大值.则>0解得a<-3或a>3,从而a<-3.
③当a>3时,若x∈(0,1]时,F(x)取得最大值,则时,此时a.
综上所述,存在实数a∈(-∞,-3),使得当x∈(0,1]时,F(x)取得最大值.……(13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知的顶点A、B在椭圆
(Ⅰ)当AB边通过坐标原点O时,求AB的长及的面积;
(Ⅱ)当,且斜边AC的长最大时,求AB所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是函数的一个极值点。
(Ⅰ)求函数的单调区间;
(Ⅱ)若直线与函数的图象有3个交点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)已知是定义在上的奇函数,当时,,其中是自然对数的底数.
(1)求的解析式;
(2)求的图象在点处的切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



(说明:第二问能用f(x)表达即可,不必算出最结果.)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线在点处的切线方程为

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=|x|-cosx+1,对于上的任意x1、x2,有如下条件:①x1>x2;②|x1|>|x2|;③x13>x23;④x12>x22;⑤|x1|>x2,其中能使f(x1)>f(x2)恒成立的条件的序号是        

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数满足,且的导函数,则的解集为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

            .

查看答案和解析>>

同步练习册答案