精英家教网 > 高中数学 > 题目详情
求过点(0,1)和(0,3),且半径为1的圆的方程.
考点:圆的标准方程
专题:直线与圆
分析:求出圆的圆心坐标,即可写出圆的方程.
解答: 解:因为圆过点(0,1)和(0,3),且半径为1,
所以圆的圆心坐标(0,2),
所求圆的方程为:x2+(y-2)2=1.
点评:本题考查圆的标准方程的求法,求解圆的圆心与半径是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}的前n项和Sn满足Sn=3n-1,则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1-x
+log2
(x+1)的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若等比数列{an}的各项均为正数,且a7a11+a8a10=2e4,lna1+lna2+lna3+…+lna17=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a
2
1
+y2=1  (a1>0)
与双曲线C2
x2
a
2
2
-3y2=1  (a2>0)
有相同的焦点F1,F2.点P是曲线C1与C2的公共点,则∠F1PF2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+x-xlnx(a>0).
(1)已知直线y=x+1与g(x)=f′(x)相切,求a的值;
(2)若函数满足f(1)=2,且在定义域内f(x)>bx2+2x恒成立,求实数b的取值范围;
(3)若函数f(x)在定义域上是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,SA⊥底面ABC,点B为以AC为直径的圆上任意一动点,且SA=AB,点M是SB的中点,AN⊥SC且交SC于点N.
(I)求证:SC⊥面AMN
(Ⅱ)当AB=BC时,求二面角N-MA-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

地球赤道的半径为6370km,所以赤道上1°的弧长是
 
km.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α是第二象限角,且tanα=-
5
12
,则sinα=
 

查看答案和解析>>

同步练习册答案