精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的左右焦点分别为过点的直线与交于点. ,则的离心率为( )

A. B. C. D.

【答案】A

【解析】

由题意画出图形,由|PF2||F1F2|3|PF1|4|QF1|,利用椭圆的定义可得:|PF1|2a2c,进一步求出|QF1||QF2|,在等腰△PF1F2中,求得得cosPF1F2.在△QF1F2中,由余弦定理可得cosQF1F2,利用cosPF1F2+cosQF1F20,化简求得5a7c,两边平方后结合隐含条件求得的值,则C的离心率可求.

如图所示,

|PF2||F1F2|

|PF2|2c,则|PF1|2a2c

3|PF1|4|QF1|

|QF1|2a2cac),

|QF2|2aacc

在等腰△PF1F2中,可得cosPF1F2

在△QF1F2中,由余弦定理可得:

cosPF1F2+cosQF1F20,得0

整理得:,∴5a7c

25a249c249a2b2),

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】小张经营某一消费品专卖店,已知该消费品的进价为每件40元,该店每月销售量(百件)与销售单价x(元/件)之间的关系用下图的一折线表示,职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.

(1)把y表示为x的函数;

(2)当销售价为每件50元时,该店正好收支平衡(即利润为零),求该店的职工人数;

(3)若该店只有20名职工,问销售单价定为多少元时,该专卖店可获得最大月利润?(注:利润=收入-支出)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线是以原点O为中心、为焦点的椭圆的一部分,曲线是以O为顶点、为焦点的抛物线的一部分,A是曲线的交点且为钝角,若.

(1)求曲线的方程;

(2)过作一条与轴不垂直的直线,分别与曲线依次交于B、C、D、E四点,若GCD中点、HBE中点,问是否为定值?若是求出定值;若不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是半正多面体(图1.半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项为,且 .

(1)求证:数列是等差数列;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABCA1B1C1中,底面ABC为等腰直角三角形,ABAC=1,BB1=2,∠ABB1=60°.

(I) 证明:AB⊥平面AB1C

(II) 若B1C=2,求AC1与平面BCB1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,侧面PAB⊥底面ABCD,底面ABCD为矩形,PAPBOAB的中点,ODPC.

(Ⅰ) 求证:OCPD

(II)若PD与平面PAB所成的角为30°,求二面角DPCB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年初,新冠肺炎疫情袭击全国,对人民生命安全和生产生活造成严重影响.在党和政府强有力的抗疫领导下,我国控制住疫情后,一方面防止境外疫情输入,另一方面逐步复工复产,减轻经济下降对企业和民众带来的损失.为降低疫情影响,某厂家拟在2020年举行某产品的促销活动,经调查测算,该产品的年销售量(即该厂的年产量)万件与年促销费用万元()满足为常数),如果不搞促销活动,则该产品的年销售量只能是2万件.已知生产该产品的固定投入为8万元,每生产一万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(此处每件产品年平均成本按元来计算)

1)将2020年该产品的利润万元表示为年促销费用万元的函数;

2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内角的对边分别为,已知.

(1)求

(2)若 成等差数列,求的面积.

查看答案和解析>>

同步练习册答案