精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x2+1(x∈R),且对于任意的x恒有f(x)≥f(x0),则x0=
0
0
分析:f(x)=2x2+1(x∈R),知f′(x)=2x•2 x2+1•ln2.令f′(x)=2x•2 x2+1•ln2=0,得x=0.列表讨论知函数f(x)=2x2+1(x∈R)在x=0处取得最小值f(0)=2.由此能求出x0的值.
解答:解:∵f(x)=2x2+1(x∈R)
∴f′(x)=2x•2 x2+1•ln2,
令f′(x)=2x•2 x2+1•ln2=0,得x=0.
列表,讨论
 x  (-∞,0)  0 (0,+∞) 
 f′(x) -  0 +
 f(x)  极小值
∴函数f(x)=2x2+1(x∈R)在x=0处取得极小值f(0)=2.
∵函数f(x)=2x2+1(x∈R)只有一个极小值,故这个极小值就是函数f(x)=2x2+1(x∈R)的最小值.
∵函数f(x)=2x2+1(x∈R)对于任意的x恒有f(x)≥f(x0),
∴f(x)≥f(x)min=f(0),
∴x0=0.
故答案为:0.
点评:本题考查函数恒成立问题的应用,解题时要认真审题,仔细解答,注意导数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案