精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中

(Ⅰ)若函数存在相同的零点,求的值;

(Ⅱ)若存在两个正整数,当时,有同时成立,求的最大值及取最大值时的取值范围.

【答案】(Ⅰ)(Ⅱ)

【解析】试题分析:(Ⅰ)求得的两根,根据存在相同的零点,列出条件,即可求解实数的值;

(2)令,得出 ,分类讨论

①当时,当且仅当;②当时, ,不合题意;

③当时,由,无解,即可得到结论.

试题解析:

(Ⅰ)

经检验上述的值均符合题意,所以的值为

(Ⅱ)令,则为正整数, ,即

,即的解集为,则由题意得区间

①当时,因为,故只能

,又因为,故,此时

,所以

当且仅当,即时, 可以取

所以, 的最大整数为

②当时, ,不合题意;

③当时,因为

故只能,无解;

综上, 的最大整数为,此时的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAD底面ABCD,

(1)求证:平面PAB平面PCD;

(2)若过点B的直线垂直平面PCD,求证: //平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
1)若曲线在点处的切线垂直于轴,求实数的值;

2时,求函数的最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是由正整数组成的无穷数列,该数列前项的最大值记为,第项之后各项 的最小值记为

I)若 ,是一个周期为的数列(即对任意 ),写出 的值.

II)设是正整数,证明: 的充分必要条件为是公比为的等比数列.

III)证明:若 ,则的项只能是或者,且有无穷多项为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,其中,由中的元素构成两个相应的集合:

其中是有序数对,集合中的元素个数分别为

若对于任意的,总有,则称集合具有性质

)检验集合是否具有性质并对其中具有性质的集合,写出相应的集合

)对任何具有性质的集合,证明

)判断的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知95个数a1a2a3,…,a95a1a2+a1a3+…+a94a95的最小正值是______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体的棱长为1,线段上有两个动点,则下列结论中正确结论的序号是__________

②直线与平面所成角的正弦值为定值

③当为定值,则三棱锥的体积为定值;

④异面直线所成的角的余弦值为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 .

(1)当时,讨论的单调性;

(2)若函数有两个极值点,且,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数)有两个极值点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案