精英家教网 > 高中数学 > 题目详情

【题目】水稻是人类重要的粮食作物之一,耕种与食用的历史都相当悠久,日前我国南方农户在播种水稻时一般有直播、撒酒两种方式.为比较在两种不同的播种方式下水稻产量的区别,某市红旗农场于2019年选取了200块农田,分成两组,每组100块,进行试验.其中第一组采用直播的方式进行播种,第二组采用撒播的方式进行播种.得到数据如下表:

产量(单位:斤)

播种方式

[840860

[860880

[880,900

[900,920

[920,940

直播

4

8

18

39

31

散播

9

19

22

32

18

约定亩产超过900斤(含900斤)为产量高,否则为产量低

1)请根据以上统计数据估计100块直播农田的平均产量(同一组中的数据用该组区间的中点值为代表)

2)请根据以上统计数据填写下面的2×2列联表,并判断是否有99%的把握认为产量高播种方式有关?

产量高

产量低

合计

直播

散播

合计

PK2k0

0.10

0.010

0.001

k0

2.706

6.635

10.828

【答案】1100块直播农田的平均产量为907斤,(2)有99%的把握认为产量高播种方式有关.

【解析】

1)根据,算出答案即可

2)由题目中给的数据完善列联表,然后算出的观察值即可

1100块直播农田的平均产量为:

(斤)

2)由题中所给的数据得到列联表如下所示:

产量高

产量低

合计

直播

70

30

100

散播

50

50

100

合计

120

80

200

由表中的数据可得的观察值

所以有99%的把握认为产量高播种方式有关

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】推进垃圾分类处理,是落实绿色发展理念的必然选择,也是打赢污染防治攻坚战的重要环节.为了解居民对垃圾分类的了解程度,某社区居委会随机抽取1000名社区居民参与问卷测试,并将问卷得分绘制频率分布表如表:

得分

男性

人数

40

90

120

130

110

60

30

女性

人数

20

50

80

110

100

40

20

1)从该社区随机抽取一名居民参与问卷测试,试估计其得分不低于60分的概率;

2)将居民对垃圾分类的了解程度分为“比较了解”(得分不低于60分)和“不太了解”(得分低于60分)两类,完成2×2列联表,并判断是否有95%的把握认为“居民对垃圾分类的了解程度”与“性别”有关?

不太了解

比较了解

合计

男性

女性

合计

3)从参与问卷测试且得分不低于80分的居民中,按照性别进行分层抽样,共抽取10人,现从这10人中随机抽取3人作为环保宣传队长,设3人中男性队长的人数为ξ,求ξ的分布列和期望.

附:,(n=a+b+c+d.

临界值表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是一个各位数字都不是0且没有重复数字的三位数,将组成的3个数字按从小到大排成的三位数记为,按从大到小排成的三位数记为,(例如,则)阅读如图所示的程序框图,运行相应的程序,任意输入一个,输出的结果=( )

A. 693 B. 594 C. 495 D. 792

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是以直径的圆上的动点,已知,则的最大值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型电器企业,为了解组装车间职工的生活情况,从中随机抽取了名职工进行测试,得到频数分布表如下:

日组装个数

人数

6

12

34

30

10

8

1)现从参与测试的日组装个数少于的职工中任意选取人,求至少有人日组装个数少于的概率;

2)由频数分布表可以认为,此次测试得到的日组装个数服从正态分布近似为这人得分的平均值(同一组数据用该组区间的中点值作为代表).

i)若组装车间有名职工,求日组装个数超过的职工人数;

ii)为鼓励职工提高技能,企业决定对日组装个数超过的职工日工资增加元,若在组装车间所有职工中任意选取人,求这三人增加的日工资总额的期望.

附:若随机变量服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一颗骰子(各面分别标有1,2,3,4,5,6的均匀正方体)抛掷三次.那么,向上一面的三个点数可构成周长能被3整除的三角形的三边长的概率_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)若正整数n可以表示成)的形式,则称n为“好数”.试求与2的正整数次幂相邻的所有好数.(2) 试求不定方程的所有非负整数解

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济的发展,个人收入的提高.自2018年10月1日起,个人所得税起征点和税率的调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:

(1)小李该月的工资、薪金等税前收入为7500元时,请你帮小李算一下调整后小李的实际收入比调整前增加了多少?

(2)某税务部门在小李所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:

先从收入在[3000,5000)及[5000,7000)的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,求两个宣讲员不全是同一收入人群的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全社会推行素质教育的大前提下,更强调了学生的全面发展,只有全面重视体育锻炼,才能使学生德智体美全面发展。为了解某高校大学生的体育锻炼情况,做了如下调查统计。该校共有学生10000人,其中男生6000人,女生4000人。为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集200位学生每周平均体育运动时间的样本数据(单位:小时).

(1)应收集多少位女生的样本数据?

(2)根据这200个样本数据,得到学生每周平均体育运动时间的频率分布直方图,其中样本数据的分组区间为:,估计该校学生每周平均体育运动时间超过4个小时的概率.

(3)在样本数据中,有50位女生的每周平均体育运动时间超过4个小时,请完成每周平均体育运动时间与性别的列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“该校学生的每周平均体育运动时间与性别有关”.

女生

男生

总计

每周平均体育运动时间不超过4小时

每周平均体育运动时间超过4小时

总计

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

同步练习册答案