精英家教网 > 高中数学 > 题目详情
11.如图,已知PA⊥平面ABC,∠ACB=90°,AP=AC,E为PC的中点.求证:
(1)BC⊥平面PAC;
(2)AE⊥平面PBC;
(3)AE⊥PB.

分析 (1)由PA⊥平面ABC可证PA⊥BC,又∠ACB=90°,即可证明BC⊥平面PAC;
(2)由(1)可证BC⊥AE,又AP=AC,E为PC的中点.可证AE⊥PC,即可证明AE⊥平面PBC.
(3)由(2)知AE⊥平面PBC,PB?平面PBC,即可证明AE⊥PB.

解答 证明:(1)∵PA⊥平面ABC,BC?平面ABC,
∴PA⊥BC,
又∵∠ACB=90°,即BC⊥AC,
∴由PA∩AC=A,可得BC⊥平面PAC;
(2)∵由(1)知BC⊥平面PAC,AE?平面PAC,
∴BC⊥AE,
又∵AP=AC,E为PC的中点.
∴AE⊥PC,
∴又PC∩BC=C,可得:AE⊥平面PBC.
(3)∵由(2)知AE⊥平面PBC,PB?平面PBC.
∴AE⊥PB.

点评 本题主要考查了直线与平面垂直的判定,考查了空间想象能力和推理论证能力,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)是定义在R上的奇函数,且当x≥0时,f(x)=2x+x+m,则f(-2)=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数y=f(x)是偶函数,f′(x)是f(x)的导函数,若f′(x)>f(x),则下列不等式(e为自然对数的底数)①e2f(2)<ef(1)<f(0);②e-1f(1)<f(0)<e2f(2);③e2f(2)<f(0)<e-1f(1)成立的个数有(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=log${\;}_{\frac{1}{3}}$(a-x)-log${\;}_{\frac{1}{3}}$(x+3)是奇函数.
(1)求实数a的值;
(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点A($\sqrt{2}$,0),B(-$\sqrt{2}$,0),直线PA与PB的斜率之积为定值-$\frac{1}{2}$.
(1)求动点P的轨迹E的方程;
(2)在轨迹E上求一点M,使它到直线l:x-y-2$\sqrt{3}$=0的距离最小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,正万形ABCD的边长为2,M,N分别为边BC、CD上的动点,且∠MAN=45°,则$\overrightarrow{AM}$•$\overrightarrow{AN}$的最小值为(  )
A.4($\sqrt{2}$-1)B.8($\sqrt{2}$-1)C.4D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求y=sin2(x+$\frac{1}{x}$)的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=sinx与y=$\frac{1}{2}$x的图象在(-$\frac{π}{2}$,$\frac{π}{2}$)上的交点有1个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.分别指出下面各命题的形式及构成它的简单命题,并指出复合命题的真假.
(1)8或6是30的约数;
(2)12能被2和3整除.

查看答案和解析>>

同步练习册答案