精英家教网 > 高中数学 > 题目详情
13.已知抛物线y2=2x上一点A到焦点F的距离与其到对称轴的距离之比为9:4,且|AF|>2,点A到原点的距离为(  )
A.$\sqrt{41}$B.4$\sqrt{5}$C.4D.8

分析 设点A的坐标为(x1,y1),求出抛物线的准线方程,结合抛物线的定义建立方程关系进行求解,求得A点坐标,利用两点之间的距离公式即可求得A到原点的距离.

解答 解:假设A在第一象限,A(x1,y1),(x1>0,y1>0),y12=2x1
抛物线y2=2x的准线方程为x=-$\frac{1}{2}$,
根据抛物线的定义,点A到焦点的距离等于点A到准线的距离,由|AF|=a+$\frac{1}{2}$>2,则a>$\frac{3}{2}$,
则A到对称轴的距离d=y1
∵点A到焦点F的距离与其到对称轴的距离之比为9:4,
∴$\frac{{x}_{1}+\frac{1}{2}}{{y}_{1}}$=$\frac{9}{4}$,
∴解得:x1=$\frac{73+9\sqrt{65}}{16}$,y1=$\frac{9+\sqrt{65}}{4}$,
则点A到原点的距离丨OA丨=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{(\frac{73+9\sqrt{65}}{16})^{2}+(\frac{9+\sqrt{65}}{4})^{2}}$=4$\sqrt{5}$,
A到原点的距离4$\sqrt{5}$,
故选:B.

点评 本题主要考查抛物线性质和定义的应用,利用抛物线的定义建立方程关系是解决本题的关键,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知直线l过抛物线y2=2px(p>0)的焦点F(1,0),交抛物线于M,N两点.
(Ⅰ)写出抛物线的标准方程及准线方程;
(Ⅱ)O为坐标原点,直线MO、NO分别交准线于点P,Q,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义域为{x|x>0}的函数f(x)满足f(xy)=f(x)+f(y)且f(8)=3,则$f({\sqrt{2}})$=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知F1,F2分别是椭圆$\frac{x^2}{4}+{y^2}=1$的两焦点,点P是该椭圆上一点,$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}}|=2\sqrt{3}$,则∠F1PF2=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知随机变量ξ的分布列如图所示,则函数a=0.3,E(ξ)=1.
 ξ    0       1       2
P     0.30.4       a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.$\lim_{x→4}\frac{{\sqrt{x}-2}}{x-4}$=$\frac{1}{4}$;    $\lim_{x→3}\frac{{{x^2}-5x+6}}{{{x^2}-8x+15}}$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{6}{x-1}$,
(1)判断函数f(x)在(1,+∞)上的单调性并用单调性的定义证明;
(2)若x∈[2,4],求函数f(x)值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.宝宝的健康成长是妈妈们最关心的问题,父母亲为婴儿选择什么品牌的奶粉一直以来都是育婴中的一个重要话题.为了解国产奶粉的知名度和消费者的信任度,某调查小组特别调查记录了某大型连锁超市2015年与2016年这两年销售量前5名的五个奶粉的销量(单位:罐),绘制出如图1的管状图:

(1)根据给出的这两年销量的管状图,对该超市这两年品牌奶粉销量的前五强进行排名;
(2)分别计算这5个品牌奶粉2016年所占总销量(仅指这5个品牌奶粉的总销量)的百分比(百分数精确到个位),并将数据填入如图2饼状图中的括号内;
(3)试以(2)中的百分比为概率,若随机选取2名购买这5个品牌中任意1个品牌的消费者进行采访,记X为被采访者中购买飞鹤奶粉的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在单位圆中,面积为1的扇形所对的弧长为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案