精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,直线l过抛物线y2=4x的焦点F交抛物线于A、B两点.
(1)若|AB|=8,求直线l的斜率
(2)若|AF|=m,|BF|=n.求证
1
m
+
1
n
为定值.
分析:(1)求出抛物线的焦点坐标,准线方程,设直线l方程为:y=k(x-1),代入y2=4x得[k(x-1)]2=4x,利用韦达定理及抛物线的定义,即可求直线l的斜率
(2)由(1)知,|AF|=m=x1+1,|BF|=n=x2+1,表示出
1
m
+
1
n
.利用韦达定理代入化简即可得出结论.
解答:(1)解:抛物线的焦点坐标为(1,0),准线方程为:x=-1
设直线l方程为:y=k(x-1),代入y2=4x得[k(x-1)]2=4x,即k2x2-(2k2+4)x+k2=0
设A(x1,y1),B(x2,y2),则x1+x2=
2k2+4
k2
,x1x2=1
∵|AB|=8,∴x1+x2+2=8
2k2+4
k2
=6
,∴k2=1
∴k=1或-1
(2)证明:由(1)知,|AF|=m=x1+1,|BF|=n=x2+1.
1
m
+
1
n
=
1
x1+1
+
1
x2+1
=
x1+1+x2+1
(x1+1)(x2+1)
=
x1+x2+2
(x1+x2)+x1x2+1 

x1+x2=
2k2+4
k2
,x1x2=1
x1+x2+2
(x1+x2)+x1x2+1
=
2k2+4
k2
+2
2k2+4
k2
+2
=1
1
m
+
1
n
=1
点评:本题重点考查抛物线的标准方程,考查抛物线过焦点的弦,利用抛物线的定义,正确运用韦达定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案