精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知曲线为参数),在以原点为极点, 轴的非负半轴为极轴建立的机坐标系中,直线的极坐标方程为.

(1)求曲线的普通方程和直线的直角坐标方程;

(2)过点且与直线平行的直线两点,求点两点的距离之积.

【答案】12

【解析】试题分析:削去参数得出椭圆的普通方程,利用把极坐标方程化为直角坐标方程;把直线方程写成参数方程,代入到椭圆方程中,利用根与系数关系求出,借助直线的参数方程中参数的几何意义,用表示,并借助,求出结果.

试题解析:

(Ⅰ)曲线化为普通方程为: ,

,得

所以直线的直角坐标方程为 .

(Ⅱ)直线的参数方程为为参数),

代入化简得: ,设两点所对应的参数分别为,则

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当,的单调区间;

(2)若求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若,求曲线在点处的切线方程;

(2)若不等式对任意恒成立.(i)求实数的取值范围;(ii)试比较的大小,并给出证明(为自然对数的底数, ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年某招聘会上,有5个条件很类似的求职者,把他们记为A,B,C,D,E,他们应聘秘书工作,但只有2个秘书职位,因此5人中仅有2人被录用,如果5个人被录用的机会相等,分别计算下列事件的概率:
(1)C得到一个职位
(2)B或E得到一个职位.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若,且,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计数据(xi , yi)(i=1,2,3,4,5)由资料知y对x呈线性相关,并且统计的五组数据得平均值分别为 ,若用五组数据得到的线性回归方程 =bx+a去估计,使用8年的维修费用比使用7年的维修费用多1.1万元,
(1)求回归直线方程;
(2)估计使用年限为10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对n∈N*均有 =an+1成立,求c1+c2+c3+…+c2016

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校大一新生中的6名同学打算参加学校组织的“演讲团”、“吉他协会”等五个社团,若每名同学必须参加且只能参加1个社团且每个社团至多两人参加,则这6个人中没有人参加“演讲团”的不同参加方法数为( )

A. 3600 B. 1080 C. 1440 D. 2520

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面底面 分别为 的中点.

(1)求证: 平面

(2)求证: 平面

查看答案和解析>>

同步练习册答案