精英家教网 > 高中数学 > 题目详情
精英家教网如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别交单位圆于A,B两点.已知A,B两点的横坐标分别是
2
10
2
5
5

(1)求tan(α+β)的值;
(2)求α+2β的值.
分析:(1)先由已知条件得cosα=
2
10
,cosβ=
2
5
5
;再求sinα、sinβ进而求出tanα、tanβ;
最后利用tan(α+β)=
tanα+tanβ
1-tanαtanβ
解之.
(2)利用第一问把tan(α+2β)转化为tan[(α+β)+β]求之,再根据α+2β的范围确定角的值.
解答:解:(1)由已知条件即三角函数的定义可知cosα=
2
10
,cosβ=
2
5
5

因为α为锐角,则sinα>0,从而sinα=
1-cos2α
=
7
2
10

同理可得sinβ=
1-cos2β
=
5
5

因此tanα=7,tanβ=
1
2

所以tan(α+β)=
tanα+tanβ
1-tanα•tanβ
=
7+
1
2
1-7×
1
2
=-3

(2)tan(α+2β)=tan[(α+β)+β]=
-3+
1
2
1-(-3)×
1
2
=-1

0<α<
π
2
,0<β<
π
2
,故0<α+2β<
2

所以由tan(α+2β)=-1得α+2β=
4
点评:本题主要考查正切的和角公式与转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△OAB中,点P是线段OB及线段AB延长线所围成的阴影区域(含边界)的任意一点,且
OP
=x
OA
+y
OB
则在直角坐标平面内,实数对(x,y)所示的区域在直线y=4的下侧部分的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

1、如图,在直角坐标平面内有一个边长为a,中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为
偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标平面内有一个边长为a、中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为(  )
A、偶函数B、奇函数C、不是奇函数,也不是偶函数D、奇偶性与k有关

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•海珠区一模)如图,在直角坐标平面内,射线OT落在60°的终边上,任作一条射线OA,OA落在∠xOT内的概率是
1
6
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标中,一定长m的线段,其端点AB分别在x轴、y轴上滑动,设点M满足(λ是大于0,且不等于1的常数).

试问:是否存在定点E、F,使|ME|、|MB|、|MF|成等差数列?若存在,求出E、F的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案