精英家教网 > 高中数学 > 题目详情
6.已知x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$=$\sqrt{5}$,求:
(1)x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$;
(2)x+x-1
(3)x-x-1

分析 根据(a±b)2=a2±2ab+b2计算即可.

解答 解:(1)x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$=$\sqrt{5}$,
∴(x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$)2=(x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$)2+4=5+4=9,
∴x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3;
(2)x+x-1=(x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$)2-2=9-2=7,
(3)(x-x-12=(x+x-12-4=49-4=45,
∴x-x-1=±3$\sqrt{5}$.

点评 本题考查了指数幂的运算性质,关键是掌握完全平方公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知圆O:x2+y2=1及点A(2,0),点P(x0,y0)(y0≠0)是圆O上的动点,若∠OPA<60°,则x0的取值范围是(-1,$\frac{3-\sqrt{13}}{8}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,0<|φ|<$\frac{π}{2}$),f(0)=0,且函数f(x)图象上的任意两条对称轴之间距离的最小值是$\frac{π}{2}$.
(1)求f($\frac{π}{8}$)的值;
(2)将函数y=f(x)的图象向右平移$\frac{π}{6}$个单位后,得到函数y=g(x)的图象,求函数g(x)的解析式,并求g(x)在x∈[$\frac{π}{6}$,$\frac{π}{2}$]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知x、y满足y=3-$\sqrt{4x-{x}^{2}}$,则使x+2y+2a<0恒成立的a的取值范围是(  )
A.[$\sqrt{5}-4$,$\sqrt{5}+4$]B.(-∞,-5]C.[-5,+∞)D.(-∞,-5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示,圆O为正三角形ABC的内切圆,P为圆O上一点,向量$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则x+y的取值范围为(  )
A.[$\frac{1}{2}$,1]B.[$\frac{1}{3}$,1]C.[$\frac{1}{4}$,1]D.[$\frac{1}{3}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在单位圆上有两个动点P,Q,它们同时从点A(1,0)出发沿圆周运动,已知点P按逆时针方向每秒转$\frac{π}{3}$,点Q按顺时针方向每秒转$\frac{π}{6}$,试求它们从出发后到第五次相遇时各自走过的弧长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=$\frac{x}{{a}^{2}+a+1}$是幂函数,则a=a=0,或a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=lg(x-1)+lg(x-2)的定义域为M,函数y=lg(x2-3x+2)的定义域为N,则 (  )
A.M?NB.N?MC.M=ND.M∩N=∅

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设实数a≤2,已知函数f(x)=$\frac{a+a(2-a)^{2}}{ax-{x}^{2}}$,x∈(0,a),若存在a,x0,使得f(x0)≤2,则x0的取值集合为{1}.

查看答案和解析>>

同步练习册答案