精英家教网 > 高中数学 > 题目详情

【题目】如图,已知PA⊥平面ABCD,且四边形ABCD为矩形,M、N分别是AB、PC的中点.

(1)求证:MN⊥CD;
(2)若∠PDA=45°,求证:MN⊥平面PCD.

【答案】
(1)证明:如图所示,取PD的中点E,连接AE、NE,

∵N为PC的中点,E为PD的中点,∴NE∥CD且NE= CD,而AM∥CD
且AM= AB= CD,∴NE∥AM且NE=AM,∴四边形AMNE为平行四边形,
∴MN∥AE.又PA⊥平面ABCD,∴PA⊥CD,又∵ABCD为矩形,∴AD⊥CD,又AD∩PA=A,∴CD⊥平面PAD,∴CD⊥AE,又AE∥MN,∴MN⊥CD
(2)证明:由(1)可知CD⊥AE,MN∥AE.又∠PDA=45°,∴△PAD为等腰直角三角形,又E为PD的中点,∴AE⊥PD,∴AE⊥平面PCD. 又AE∥MN,∴MN⊥平面PCD
【解析】(1)通过证明CD⊥平面PAD即线面垂直来证明MN⊥CD即线线垂直。
(2)当∠PDA=45°时,△PAD为等腰直角三角形,在平面内找到两条直线都与MN垂直即可。
【考点精析】通过灵活运用直线与平面垂直的判定和直线与平面垂直的性质,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想;垂直于同一个平面的两条直线平行即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图, 是圆柱的母线, 的直径, 是底面圆周上异于 的任意一点, .

(1)求证:
(2)当三棱锥 的体积最大时,求 与平面 所成角的大小;
(3) 上是否存在一点 ,使二面角 的平面角为45°?若存在,求出此时 的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线y2=﹣12x的准线与双曲线 =1的两条渐近线所围成的三角形的面积等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题P:方程 表示双曲线,命题q:点(2,a)在圆x2+(y﹣1)2=8的内部.若pΛq为假命题,q也为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=1,AA1=2,∠B1A1C1=90°,D为BB1的中点.

求证:AD⊥平面A1DC1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是R上的奇函数,且当x>0时,f(x)=-2x2+4x+3.
(1)求f(x)的表达式;
(2)画出f(x)的图象,并指出f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 若关于x的方程f(x)=t有三个不同的解,其中最小的解为a,则 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有2名男生和3名女生. (Ⅰ)若其中2名男生必须相邻排在一起,则这5人站成一排,共有多少种不同的排法?
(Ⅱ)若男生甲既不能站排头,也不能站排尾,这5人站成一排,共有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: =1的离心率为 ,点F1 , F2是椭圆E的左、右焦点,过F1的直线与椭圆E交于A,B两点,且△F2AB的周长为8.
(1)求椭圆E的标准方程;
(2)动点M在椭圆E上,动点N在直线l:y=2 上,若OM⊥ON,探究原点O到直线MN的距离是否为定值,并说明理由.

查看答案和解析>>

同步练习册答案